Find x and y for these problems part 2
1 answer:
Answer: See Below
<u>Step-by-step explanation:</u>
NOTES
45°- 45° - 90° sides are a - a - a√2
30° - 60° - 90° sides are b - b√3 - 2b
Solve for "a" <em>or "b"</em> and then plug that value in to find the missing side lengths.
c) 30° - 60° - 90°
30° : b = x → 5√3 = x
60° : b√3 = 15 → b = 5√3
90° : 2b = y → 10√3 = y
d) 30° - 60° - 90°
30° : b = x → 12 = x
60° : b√3 = y → 12√3 = y
90° : 2b = 24 → b = 12
e) 45° - 45° - 90°
45° : a = 5√2
45° : a = x → 5√2 = x
90° : a√2 = y → 10 = y
f) 30° - 60° - 90°
30° : b = y → 5 = y
60° : b√3 = 5√3 → b = 5
90° : 2b = x → 10 = x
g) 30° - 60° - 90°
30° : b = x → 3√3 = x
60° : b√3 = 9 → b = 3√3
90° : 2b = y → 6√3 = y
h) 45° - 45° - 90°
45° : a = 3
45° : a = (1/2)y → 3 = (1/2)y → 6 = y
90° : a√2 = x → 3√2 = x
You might be interested in
Answer:
a = 14
Step-by-step explanation:
28[-14]=14;
-14
The answer is x is equal to 2.64
it's called the distance formula. The square root of (-5-7)^2+(-1-(-6))^2
This simplifies to the square root of -12^2+5^2, or the square root of 144+25.
144+25=169.
the square root of 169 is 13
Answer:
∠O = 50°
Step-by-step explanation:
Opposite angles of an isosceles trapezoid are supplementary.
... ∠O + ∠T = 180°
... ∠O = 180° - ∠T = 180° -130° = 50°