Answer:
From the graph attached, we know that
by the corresponding angle theorem, this theorem is about all angles that derive form the intersection of one transversal line with a pair of parallels. Specifically, corresponding angles are those which are placed at the same side of the transversal, one interior to parallels, one exterior to parallels, like
and
.
We also know that, by definition of linear pair postulate,
and
are linear pair. Linear pair postulate is a math concept that defines two angles that are adjacent and for a straight angle, which is equal to 180°.
They are supplementary by the definition of supplementary angles. This definition states that angles which sum 180° are supplementary, and we found that
and
together are 180°, because they are on a straight angle. That is, 
If we substitute
for
, we have
, which means that
and
are also supplementary by definition.
Answer: the answer is 20,250
Step-by-step explanation:
35% of 15,000 = 5,250
15,000+5250 = 20,250
Answer:

Step-by-step explanation:

Multiply both sides by 4:


Divide both sides by 3:


<h3>
Answer: Check out the diagram below.</h3>
Explanation:
Use your straightedge to extend segment AB into ray AB. This means you'll have it start at A and go on forever through B. Repeat these steps to turn segment AC into ray AC.
The two rays join at the vertex angle A. Point A is the center of the universe so to speak because it's the center of dilation. We consider it an invariant point that doesn't move. Everything else will move. In this case, everything will move twice as much compared to as before.
Use your compass to measure the width of AB. We don't need the actual number. We just need the compass to be as wide from A to B. Keep your compass at this width and move the non-pencil part to point B. Then mark a small arc along ray AB. What we've just done is constructed a congruent copy of segment AB. In other words, we've just double AB into AB'. This means the arc marking places point B' as the diagram indicates.
The same set of steps will have us construct point C' as well. AC doubles to AC'
Once we determine the locations of B' and C', we can then form triangle A'B'C' which is an enlarged copy of triangle ABC. Each side of the larger triangle has side lengths twice as long.
Note: Points A and A' occupy the same exact location. As mentioned earlier, point A doesn't move.
Answer:
r≤9
Step-by-step explanation: