Answer:
x/y is either 1 or -1.
Step-by-step explanation:
Given : x = (10 − 3i) and y = (3 − 10i), Then xy = -109 i
To find : x/y
Solution : We have x = (10 − 3i) and y = (3 − 10i),
We need to find x/y
Given xy = -109i
(10 - 3i)(3 - 10i) = -109i
.
Distributes 10 over (3 -10i) and -3i over (3 -10i).
(10)(3) -3i(3) + 10(-10i) - 3i(-10i) = -109i
30 - 9i - 100i -30i² = -109i
multiply both side by -1
-30 + 9i + 100i + 30i² = 109i
30i² + 9i + 100i - 109i - 30 = 0
30i² - 30 = 0
30i² = 30
i² = 1
Taking square root both sides
i = -1 or i = 1
Then find the value of x and y if i = -1
If i = -1, therefore
x = 10 - 3(-1)
x = 10 + 3
x = 13
y = (3 - 10i)
y = 3 - 10(-1)
y = 3 + 10
y = 13
x/y = 13/13 = 1
Then find the value of x and y if i = 1
x = 10 - 3(1)
x = 10 - 3
x = 7
y = (3 - 10i)
y = 3 - 10(1)
y = 3 - 10
y = -7
x/y = 7/-7 = -1
The value of x/y is either 1 or -1
Therefore, x/y is either 1 or -1.