Answer:
26 students per classroom
Step-by-step explanation:
To solve this, the ratio 234 students:9 classrooms must be converted to:
s students:1 classroom
To convert the ratio, 9 was divided by 9 to get 1, and so you must also divide 234 by 9 to maintain the same ratio, which gives us the answer:
26 students: 1 classroom
Answer:
Step-by-step explanation:
Ed = 96 but switch the numbers
1/27
1/27
125
Step-by-step explanation:
Given that,
a - b = 3
9^(1/2b) /3^a = 3^(2/2b) /3^a
= 3^b/3^a
= 3^(b-a)
= 3^(-3)
= 27^(-1)
= 1/27
27^(1/3b) /9^(1/2a) = 3^(3/3b) /3^(2/2a)
= 3^b/3^a
= 3^(b-a)
= 3^(-3)
= 27^(-1)
= 1/27
125^(1/3a) /25^(1/2b) = 5^(3/3a) /5^(2/2b)
= 5^a/5^b
= 5^(a- b)
= 5^3
= 125
Answer:
28. m<A=20°, m<B=70°
32. m<A=103°, m<B=77°
Step-by-step explanation:
complementary angle=a+b=90°
supplementary angle=a+b=180°
28. A+B=90°
5x+17x+2=90°
22x+2=90°
22x=90-2
22x=88
22x/22=88/22
x=88/22=<u>4</u>
m<A=5x=5*4=<u>20°</u>
m<B=17x+2=17*4+2=68+2=<u>70°</u>
<u>Check</u>
A+B=90°
20+70=90°
<u>90°=90°</u>
32. A+B=180°
x+11+x-15=180°
2x-4=180°
2x=180+4
2x=184
2x/2=184/2
x=184/2
x=<u>92</u>
m<A=x+11=92+11=<u>103°</u>
m<B=x-15=92-15=<u>77°</u>
<u>Check</u>
A+B=180°
103+77=180°
<u>180°=180°</u>