Answer: 1.36 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
To calculate the moles, we use the equation:
moles of solute= 

The balanced reaction between barium hydroxide and perchloric acid:

To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is 
We are given:

Putting values in above equation, we get:

Thus the concentration of the acid is 1.36 M
Capture all of the smoke and weight it. it will weigh exactly the same before and after you burn it but will just be CO2 and H2O gas.
Answer:
3–ethyl–4–methylhexane.
Explanation:
To name the above compound, do the following:
1. Determine the functional group of the compound.
2. Locate the longest continuous carbon chain. This gives the parent name of the compound.
3. Identify the substituent group attached to the compound.
4. Give the substituent the lowest possible count.
5. Combine the above to name the compound.
Now, we shall name the compound given in the question above as follow:
1. The compound contains only single bond. Therefore, the compound belong to the alkane family.
2. The longest continuous carbon chain is 6 i.e hexane.
3. The substituent group attached are:
i. Methyl, CH3.
ii. Ethyl, CH2CH3.
4. we shall name the substituents alphabetically i.e ethly will come before methyl. Therefore,
Ethyl is located at carbon 3.
Methy is located at carbon 4.
5. Therefore, the name of the compound is:
3–ethyl–4–methylhexane.
Answer:
The correct option is D
Explanation:
Normally, beta-oxidation of fatty acid occurs in the mitchondrial matrix, however, when the fatty acid chains are too long, the beta-oxidation occurs in the peroxisomes <u>where the oxidation is not attached to ATP synthesis but rather transferred (i.e high energy electrons are transferred) to O₂ to form hydrogen peroxide</u> (H₂O₂). This is the major difference between the beta-oxidation that occurs in the peroxisomes to that which occurs in the mitochondria.