The object's final velocity, given the data is 10.5 rad/s
<h3>What is acceleration? </h3>
This is defined as the rate of change of velocity which time. It is expressed as
a = (v – u) / t
Where
- a is the acceleration
- v is the final velocity
- u is the initial velocity
- t is the time
<h3>How to determine the final velocity</h3>
The following data were obtained from the question
- Initial velocity (u) = 1.5 rad/s
- Acceleration (a) = 0.75 rad/s²
- Time (t) = 12 s
- Final velocity (v) = ?
The final velocity can be obtained as follow:
a = (v – u) / t
0.75 = (v – 1.5) / 12
Cross multiply
v – 1.5 = 0.75 × 12
v – 1.5 = 9
Collect like terms
v = 9 + 1.5
v = 10.5 rad/s
Thus, the final velocity of the object is 10.5 rad/s
Learn more about acceleration:
brainly.com/question/491732
#SPJ1
Answer:
Questions that cannot be answered through scientific investigation are those that relate to personal preference, moral values, the supernatural, or unmeasurable phenomena.
A steering wheel, a wrench, a screwdriver, and the back wheel of a bike are all examples of tools with a wheel and axle.
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m