<span>The speed of a wave, V, is f *lambda. Where f is the frequency and lambda is the distance. If a new crest reaches the end every 4 secs; it takes 8s to cover the distance. Hence, f, which is the number of oscillations covered is 8s. So we have V = 8 * 5 = 40 ms^1.</span>
Answer:
Potential difference is the work done in moving a positive test charge from infinity to the point in question.
Voltage is an expression of PD. (Joules / Coulomb)
Say that a capacitor has a PD of 5 Volts. The work in moving a positive test charge from the positive plate to the negative plate is -5 Joules/Coulomb or -5 volt. (At the positive plate the positive test charge (1 Coulomb) already has a PD of + 5 Volts.)
Answer:
mercury and alcohol
ii) used to test temperatures
Efficiency η of a Carnot engine is defined to be:
<span>η = 1 - Tc / Th = (Th - Tc) / Th </span>
<span>where </span>
<span>Tc is the absolute temperature of the cold reservoir, and </span>
<span>Th is the absolute temperature of the hot reservoir. </span>
<span>In this case, given is η=22% and Th - Tc = 75K </span>
<span>Notice that although temperature difference is given in °C it has same numerical value in Kelvins because magnitude of the degree Celsius is exactly equal to that of the Kelvin (the difference between two scales is only in their starting points). </span>
<span>Th = (Th - Tc) / η </span>
<span>Th = 75 / 0.22 = 341 K (rounded to closest number) </span>
<span>Tc = Th - 75 = 266 K </span>
<span>Lower temperature is Tc = 266 K </span>
<span>Higher temperature is Th = 341 K</span>
Answer:
1.07 nT
Explanation:
We know that E/B = c where E = electric field amplitude = 320 mV/m = 0.32 V/m, B = magnetic field amplitude and c = speed of light = 3 × 10⁸ m/s.
So, B = E/c
Substituting E and c into B, we have
B = E/c
= 0.32 V/m ÷ 3 × 10⁸ m/s
= 0.1067 × 10⁻⁸ T
= 1.067 × 10⁻⁹ T
= 1.067 nT
≅ 1.07 nT