The picture isn’t clear so I can’t read the dimensions of the box but I can try my best to guide u through the question.
For part a u need to find the volume of the box as that will equal the volume of sand that can be filled inside.
For this u multiply the height, width and length of the box.
For part b the mass of sand alone will be
=Mass of box + sand - Mass of empty box
=216 - 40
=176 grams
For part c the density of sand can be calculated by the formula
Density= Mass/Volume
So the mass (176g) / volume from part a
For part d u need to know that something will float if it has a lower density than what it is floating in. If the final density of sand that was found in part c is less than the density of gold (19.3 g/cm^3) it will float. Otherwise it will sink.
Hope this helped!
To develop this problem we will apply the concepts related to the potential energy per unit volume for which we will obtain an energy density relationship that can be related to the electric field. From this formula it will be possible to find the electric field required in the problem. Our values are given as
The potential energy, 
The volume, 
The potential energy per unit volume is defined as the energy density.



The energy density related with electric field is given by

Here, the permitivity of the free space is

Therefore, rerranging to find the electric field strength we have,



Therefore the electric field is 2.21V/m
The red at the bottom is just the holder for the beaker. It’s not apart of the density.
Your weight on the moon given the data from the question is 110.5 N
<h3>Definition of mass and weight </h3>
Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.
Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.
<h3>Relationship between mass and weight </h3>
Mass and weight are related according to the following equation
Weight (W) = mass (m) × Acceleration due to gravity (g)
<h3>How to determine the weight on the moon</h3>
- Mass (m) = 65 Kg
- Acceleration due to gravity on the moon (g) = 1.7 m/s²
- Weight (W) =?
W = mg
W = 65 × 1.7
W = 110.5 N
Learn more about mass and weight:
brainly.com/question/14684564
#SPJ1
Answer:
you absolute buffoon Use Ohms' Law: V = RI
V = (1x10^3)(5x10^-3) = 5 volts
Yes, this is in the range of normal household voltages.
Explanation: