1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
4 years ago
9

A projectile is fired upward at an angle θ above the horizontal with an initial speed v0. At its maximum height, what are its ve

locity vector, its speed, and its acceleration vector?
Physics
1 answer:
aliya0001 [1]4 years ago
7 0

Answer:

\vec{v}_{\rm max} = v\cos(\theta)(\^x)\\|\vec{v}_{\rm max}| = v\cos(\theta)\\\vec{a} = \vec{g} = -9.8\^y

Explanation:

The equations of kinematics will be used to solve this question:

y - y_0 = v_{y_0}t + \frac{1}{2}a_yt^2\\v_y^2 = v_{y_0}^2 + 2a_y(y - y_0)\\v_y = v_{y_0} + a_yt

At its maximum height, the projectile has zero velocity in the y-direction. But its velocity in the x-direction is unaffected.

First, let's apply the above equations to the x-direction.

There is no acceleration in the x-direction. So, its velocity in the x-direction is constant during the motion.

v_x = v_{x_0} + a_xt = v_{x_0} + 0\\v_x = v_{x_0} = v\cos(\theta)

Therefore, the velocity vector of the projectile is

v_{max} = v_x = v\cos(\theta)

The speed of the projectile is the same.

The acceleration vector is constant during the motion and equal to the gravitational acceleration, which is -9.8 downwards.

You might be interested in
Two of the types of infrared light, ir-c and ir-a, are both components of sunlight. their wavelengths range from 3000 to 1,000,0
NikAS [45]
The energy of a light wave is calculated using the formula
E = hc/λ
h is the Planck's constant
c is the speed of light
λ is the wavelength
For the ir-c, the range is
<span>6.63 x 10^-34 (3x10^8) / 3000 = 6.63 x 10 ^-29 J
</span>6.63 x 10^-34 (3x10^8) / 1000000 = 1.99 x 10^-31 J

For the ir-a, the range is
6.63 x 10^-34 (3x10^8) / 700 = 2.84 x 10^-28 J
6.63 x 10^-34 (3x10^8) / 1400 = 1.42 x 10^-28 J
6 0
3 years ago
Read 2 more answers
A lemon with mass 0.3 kg falls out of a tree from a height of 1.8 m. How much mechanical energy does the lemon have just before
Zina [86]
Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. It can either be kinetics or potential. In this problem you know it starting position so you can calculate it's potential energy (PE):

<span>PE=mass∗gravity∗height=0.3kg∗9.8m/s2∗1.8m=?

</span>The answer will typically be given in joules:

1J=kg∗m2s2 Could be wrong...  But I believe it is 5.3...? as a final product.
3 0
4 years ago
Read 2 more answers
Arunner starts from rest and accelerates uniformly to a speed of 8.0 meters per
VladimirAG [237]

Answer:

2.0 m/s/s

Explanation:

The acceleration of an object is the rate of change of velocity of the object.

Mathematically, it is given by:

a=\frac{v-u}{t}

where

u is the initial velocity

v is the final velocity

t is the time taken for the velocity to change from u to v

Acceleration is a vector, so it has both a magnitude and a direction.

For the runner in this problem, we have:

u = 0 is the initial velocity (he starts from rest)

v = 8.0 m/s is the final velocity

t = 4.0 s is the time taken

Substituting, we find

a=\frac{8.0-0}{4.0}=2.0 m/s^2

3 0
3 years ago
You’ve made the finals of the science Olympics. As one of your tasks you’re given 1.0 g of copper and asked to make a cylindrica
Pani-rosa [81]

Answer:

Length = 2.92 m

Diameter = 0.11 mm

Explanation:

We have m = dl D \ \ \& \ \ \ R = \frac{\rho l}{A} , where:

l is the length

m = 1.0 g = 1 \times 10^{-3} \ kg\\R = 1.3 \ \Omega\\\rho = 1.7 \times 10^{-8} \Omega m\\d = 8.96 \ g/cm^3 = 8960 kg/m^3

We divide the first equation by the second equation to get:

\frac{m}{R} = \frac{d A^2}{\rho}

A^2 = \frac{m \rho}{dR} \\\\A^2 = \frac { 1 \times 10^{-3} \times 1.7 \times 10^{-8}}{8960 \times 1.3}\\\\A^2 = 1.5 \times 10^{-15}\\\\ A= 3.8 \times 10^{-8}   \ m^2

Using this Area, we find the diameter of the wire:

D = \sqrt{\frac{4A}{\pi}}

D = \sqrt{\frac{4 \times 3.8 \times 10^{-8} }{\pi}}

D = 0.00011 \ m = 1.1 \times 10^ {-4} = 0.11 \ mm

To find the length, we multiply the two equations stated initially:

mR = d\rho l^2\\\\l^2 = \frac{mR}{d\rho} \\\l^2 = \frac {1.0 \times 10^{-3} \times 1.3}{8960 \times 1.7\times 10^{-8}}

l^2 = 8.534\\l =   2.92 \ m

8 0
3 years ago
Read 2 more answers
How much current does a 10.0 Ω resistor draw from a 12 V battery?
Amiraneli [1.4K]
The answer would be B.
(V=IR, 12-10i, 12/10=1.2)
7 0
3 years ago
Other questions:
  • 2. Două surse coerente oscileaza cu frecventa de 1 Hz, iar undele generate de elel se propaga pe suprafața apei cu viteza de 1,
    7·1 answer
  • What two characteristics do electromagnetic waves vary in?
    13·2 answers
  • Which best describes a chain reaction associated with a nuclear reaction?
    10·1 answer
  • We wrap a light, nonstretching cable around a 10.0 kg kg solid cylinder with diameter of 38.0 cm cm . The cylinder rotates with
    11·1 answer
  • A typical laboratory centrifuge rotates at 3700 rpm . Test tubes have to be placed into a centrifuge very carefully because of t
    9·1 answer
  • The International Space Station (ISS) orbits Earth at an altitude of 400 km. Using this information, plus the mass and radius of
    8·1 answer
  • If the speed of the wave is 12 m/s and the frequency is 2.3 Hz, what is the <br> wavelength?
    6·1 answer
  • 3
    7·1 answer
  • A car is traveling at 35.8 m/s. What acceleration would it have if it took 2.0 s to come to a complete stop?
    10·1 answer
  • Write the energy conversion when a moving car braking to stop completely​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!