Yes it will thats the same question I got
By using Ohm's law, we can calculate the resistance of the wire. Ohm's law states that:

where V is the potential difference across the conductor, I is the current and R the resistance. Rearranging the equation, we get

Now we can use the following equation to calculate the length of the wire:

(1)
where

is the resistivity of the material
L is the length of the conductor
A is its cross-sectional area
In this problem, we have a wire of copper, with resistivity

. The radius of the wire is half the diameter:

And the cross-sectional area is

So now we can rearrange eq.(1) to calculate the length of the wire:
Answer:
<h2>T(Period) = 1.33s</h2><h2>f(Frequency) = 0.75Hz (cycles/second)</h2>
Explanation:
<h2>Given:</h2><h2 /><h2>λ = 4.0m</h2><h2>Amplitude = 25m</h2><h2>d = 24m</h2><h2>s = 8.0s</h2><h2 /><h2>Required:</h2><h2>f = ?</h2><h2>T = ?</h2><h2 /><h2>Analysis:</h2><h2>v = λf</h2><h2>f =N/t</h2><h2>T = 1/f</h2><h2 /><h2>v = d/t</h2><h2 /><h2>Solve:</h2><h2>v = d/t = 24/8.0 → v = 3.0m/s</h2><h2>v =λf → f = v/λ = 3.0/4.0 → f = 0.75Hz</h2><h2>T = 1/f = 1/0.75 → T = 1.33s</h2><h2 /><h2>Hopes this helps. Mark as brainlest plz!</h2>