Hi there!
We can use the following (derived) equation to solve for the final velocity given height:
vf = √2gh
We can rearrange to solve for height:
vf² = 2gh
vf²/2g = h
Plug in the given values (g = 9.81 m/s²)
(13)²/2(9.81) = 8.614 m
We can calculate time using the equation:
vf = vi + at, where:
vi = initial velocity (since dropped from rest, = 0 m/s)
a = acceleration (in this instance, due to gravity)
Plug in values:
13 = at
13/a = t
13/9.81 = 1.325 sec
Unless you are a mutant....I don't think you would make it. I'm 5'8" and most people are 6'7" or less. It's bsically impossible to do. :)
Answer:
a) i = -9.63 cm
, h ’= .0.24075 cm erect
b) i = 259.74 cm
,
Explanation:
For this exercise let's start by finding the focal length of the lens
1 / f = (n-1) (1 / R₁ - 1 / R₂)
1 / f = (1.70 -1)) 1 / ∞ - 1/13)
1 / f = 0.0538
f = - 18.57 cm
Now we can use the constructor equation
1 / f = 1 / o + 1 / i
1 / i = 1 / f - 1 / o
1 / i = -1 / 18.57 -1/20
1 / i = -0.1038 cm
I = -9.63 cm
For the height of the
image let's use magnification
m = h '/ h = - i / o
h ’= -h i / o
h ’= - 0.5 (-9.63) / 20
h ’= .0.24075 cm
b) we invert the lens
The focal length is
1 / f = (1.70 -1) (1/13 - 1 / int)
1 / f = 0.0538
f = 18.57 cm
1 / i = 1 / f -1 / o
1 / I = 1 / 18.57 - 1/20
1 / I = 3.85 10-3
i = 259.74 cm
h ’= - 0.5 259.74 / 20
h ’= 6.4935 cm
Answer:
Explanation:
Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.
To objective is to find the:
(i) required heat exchanger area.
(ii) flow rate to be maintained in the evaporator.
Given that:
water temperature = 300 K
At a reasonable depth, the water is cold and its temperature = 280 K
The power output W = 2 MW
Efficiency
= 3%
where;



However, from the evaporator, the heat transfer Q can be determined by using the formula:
Q = UA(L MTD)
where;

Also;




LMTD = 4.97
Thus, the required heat exchanger area A is calculated by using the formula:

where;
U = overall heat coefficient given as 1200 W/m².K

The mass flow rate:

Answer:
The mass and velocity for kinetic energy. Potential Energy: How high an object is and the mass in kilograms or it is the weight in and how high an object is. There are two formulas to calculate potential energy, but the one with grams is used more often.
Explanation:
Hope this helps!