For distance vs time graphs, the slope stands for speed, as speed is a scalar, along with distance.
For displacement (position) vs time graphs, the slope stands for velocity, as velocity is a vector, along with displacement.
The drag force acting on the rocket is 80N.
<h3>Give an explanation of drag force?</h3>
The divergence in velocity between the fluid and the item, also known as drag, exerts a force on it. Between the liquid and the solid object, there should be motion. Drag is absent in the absence of motion.
The air molecules are more compressed (pushed together) on the surfaces that are facing the front while being more dispersed (spread out) on the surfaces facing the back. Turbulent flow, which occurs when air layers split from the surface and start to swirl, is what causes this.
The drag force acting on the rocket F = ma
Given,
m = 4kg, a = 20ftm/s²
Substituting m and a values in the above formula,
The drag force acting on the rocket F = 4×20
The drag force acting on the rocket F = 80N.
To know more about drag force visit:
brainly.com/question/15144984
#SPJ4
Answer:
Explanation:
The total fluid mass can be obtained by multiplying the mass flow rate by the time flow rate.
Mass flow rate is given as
m = ρAv
Where
m is mass flow rate
ρ is density
A is area and it is given as πr²
v is velocity
Then,
M = mt
Where M is mass and t is time
Them,
M = ρAv × t
M = ρ× πr² × v × t
Given that, .
Radius of pipe is
r = 0.089m
velocity of pipe is
v = 3.3m/s
Time taken is
t = 1 hour = 3600 seconds
Density of water is
ρ = 1000kg/m³
M = ρ× πr² × v × t
M = 1000 × π × 0.089² × 3.3 × 3600
M = 295,628.52 kg
M = 2.96 × 10^5 kg
Answer:
1/2m or 0.5m
Explanation:
The formula to find the speed of a wave is given by:
V = frequency x wavelength
To find the wavelength, make the wavelength the subject of the formula
Therefore, wavelength = velocity ÷ frequency
E=mc^2
hence m= E/c^2
= (3.6x10^26)/(9×10^16)
= 4x 10^9 kg