Answer:
yes
Step-by-step explanation:
We are given that a Cauchy Euler's equation
where t is not equal to zero
We are given that two solutions of given Cauchy Euler's equation are t,t ln t
We have to find the solutions are independent or dependent.
To find the solutions are independent or dependent we use wronskain

If wrosnkian is not equal to zero then solutions are dependent and if wronskian is zero then the set of solution is independent.
Let 


where t is not equal to zero.
Hence,the wronskian is not equal to zero .Therefore, the set of solutions is independent.
Hence, the set {t , tln t} form a fundamental set of solutions for given equation.
well, we know the ceiling is 6+2/3 high, and Eduardo has 4+1/2 yards only, how much more does he need, well, is simply their difference, let's firstly convert the mixed fractions to improper fractions and then subtract.
![\stackrel{mixed}{6\frac{2}{3}}\implies \cfrac{6\cdot 3+2}{3}\implies \stackrel{improper}{\cfrac{20}{3}} ~\hfill \stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{20}{3}-\cfrac{9}{2}\implies \stackrel{using ~~\stackrel{LCD}{6}}{\cfrac{(2\cdot 20)-(3\cdot 9)}{6}}\implies \cfrac{40-27}{6}\implies \cfrac{13}{6}\implies\blacktriangleright 2\frac{1}{6} \blacktriangleleft](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%203%2B2%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B20%7D%7B3%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B20%7D%7B3%7D-%5Ccfrac%7B9%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Busing%20~~%5Cstackrel%7BLCD%7D%7B6%7D%7D%7B%5Ccfrac%7B%282%5Ccdot%2020%29-%283%5Ccdot%209%29%7D%7B6%7D%7D%5Cimplies%20%5Ccfrac%7B40-27%7D%7B6%7D%5Cimplies%20%5Ccfrac%7B13%7D%7B6%7D%5Cimplies%5Cblacktriangleright%202%5Cfrac%7B1%7D%7B6%7D%20%5Cblacktriangleleft)
Just divide it by 8 and get 1/8 but I’m not so sure that’s right