Answer:
a) The length of segment AC is approximately 5.83 centimeters.
b) The angle ACD is approximately 34.5º.
Step-by-step explanation:
a) Since
, the length of segment
is determined by Pythagorean Theorem, that is:


The length of segment AC is approximately 5.831 centimeters.
b) Since
, the length of segment
is determined by this Pythagorean identity:


The angle ACD is determined by the following trigonometric expression:





The angle ACD is approximately 34.448º.
Answer:
t^6
Step-by-step explanation:
when dividing exponents, you subtract (refer to exponent rule)
t^12 - t^6 = t^6
Answer:
Jamie is correct
Step-by-step explanation:
Jamie is correct.
Example: isosceles triangle ABC AB=AC
∠B = ∠C ∠A + ∠B + ∠C = 180°
if ∠A = x ∠B = ∠C = 1/2 * ( 180° - x)
if ∠B or ∠C = x ∠A = 180° - 2x
Answer:
<em>The answers are for option (a) 0.2070 (b)0.3798 (c) 0.3938
</em>
Step-by-step explanation:
<em>Given:</em>
<em>Here Section 1 students = 20
</em>
<em>
Section 2 students = 30
</em>
<em>
Here there are 15 graded exam papers.
</em>
<em>
(a )Here Pr(10 are from second section) = ²⁰C₅ * ³⁰C₁₀/⁵⁰C₁₅= 0.2070
</em>
<em>
(b) Here if x is the number of students copies of section 2 out of 15 exam papers.
</em>
<em> here the distribution is hyper-geometric one, where N = 50, K = 30 ; n = 15
</em>
<em>Then,
</em>
<em>
Pr( x ≥ 10 ; 15; 30 ; 50) = 0.3798
</em>
<em>
(c) Here we have to find that at least 10 are from the same section that means if x ≥ 10 (at least 10 from section B) or x ≤ 5 (at least 10 from section 1)
</em>
<em>
so,
</em>
<em>
Pr(at least 10 of these are from the same section) = Pr(x ≤ 5 or x ≥ 10 ; 15 ; 30 ; 50) = Pr(x ≤ 5 ; 15 ; 30 ; 50) + Pr(x ≥ 10 ; 15 ; 30 ; 50) = 0.0140 + 0.3798 = 0.3938
</em>
<em>
Note : Here the given distribution is Hyper-geometric distribution
</em>
<em>
where f(x) = kCₓ)(N-K)C(n-x)/ NCK in that way all these above values can be calculated.</em>