<u>Given</u>:
Given that the triangle ABC has vertices A(-2,3), B(0,3) and C(-1,-1).
We need to determine the coordinates of the image after a reflection over the x - axis.
Let A'B'C' denote the coordinates of the triangle after a reflection over the x - axis.
<u>Coordinates of the point A':</u>
The general rule to reflect the coordinate across the x - axis is given by
![(x,y)\rightarrow (x,-y)](https://tex.z-dn.net/?f=%28x%2Cy%29%5Crightarrow%20%28x%2C-y%29)
Substituting the point A(-2,3), we get;
![(-2,3)\rightarrow (-2,-3)](https://tex.z-dn.net/?f=%28-2%2C3%29%5Crightarrow%20%28-2%2C-3%29)
Thus, the coordinates of the point A' is (-2,-3)
<u>Coordinates of the point B':</u>
The general rule to reflect the coordinate across the x - axis is given by
![(x,y)\rightarrow (x,-y)](https://tex.z-dn.net/?f=%28x%2Cy%29%5Crightarrow%20%28x%2C-y%29)
Substituting the point B(0,3), we get;
![(0,3)\rightarrow (0,-3)](https://tex.z-dn.net/?f=%280%2C3%29%5Crightarrow%20%280%2C-3%29)
Thus, the coordinates of the point B' is (0,-3)
<u>Coordinates of the point C':</u>
The general rule to reflect the coordinate across the x - axis is given by
![(x,y)\rightarrow (x,-y)](https://tex.z-dn.net/?f=%28x%2Cy%29%5Crightarrow%20%28x%2C-y%29)
Substituting the point C(-1,-1), we get;
![(-1,-1)\rightarrow (-1,1)](https://tex.z-dn.net/?f=%28-1%2C-1%29%5Crightarrow%20%28-1%2C1%29)
Thus, the coordinates of the point C' is (-1,1)
Hence, the coordinates of the image after a reflection over the x - axis is A'(-2,-3), B(0,-3) and C(-1,1)