<h3>4 people do 10 hours and one person does 20 hours</h3>
<em><u>Solution:</u></em>
Given that,
A supervisor must split 60 hours of overtime between five people
One employee must be assigned twice the number of hours as each of the other four employees
Let "x" be the number of hours overtime per person.
One person does 2x hours of overtime
Which means,
(number of hours overtime per person)(6 person) = 60 hours
6x = 60
x = 10
Thus, 4 people do 10 hours and one person does 20 hours
You mean (x-8)/3 = 3 ...right?
You would multiply both sides by 3.
Then, add 8 to both sides.
x=17
On dividing all the three ratios with 2 u can simplify it as
2:11:15
Hope it helps.
Dont forget to say thx if it helps
Answer: 1. 140 times
Step-by-step explanation:
![\begin{array}{rrrrr} 10x&-&18y&=&2\\ -5x&+&9y&=&-1 \end{array}~\hfill \implies ~\hfill \stackrel{\textit{second equation }\times 2}{ \begin{array}{rrrrr} 10x&-&18y&=&2\\ 2(-5x&+&9y&)=&2(-1) \end{array}} \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{rrrrr} 10x&-&18y&=&2\\ -10x&+&18y&=&-2\\\cline{1-5} 0&+&0&=&0 \end{array}\qquad \impliedby \textit{another way of saying \underline{infinite solutions}}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-5x%26%2B%269y%26%3D%26-1%20%5Cend%7Barray%7D~%5Chfill%20%5Cimplies%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bsecond%20equation%20%7D%5Ctimes%202%7D%7B%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%202%28-5x%26%2B%269y%26%29%3D%262%28-1%29%20%5Cend%7Barray%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-10x%26%2B%2618y%26%3D%26-2%5C%5C%5Ccline%7B1-5%7D%200%26%2B%260%26%3D%260%20%5Cend%7Barray%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Banother%20way%20of%20saying%20%5Cunderline%7Binfinite%20solutions%7D%7D)
if we were to solve both equations for "y", we'd get

notice, the 1st equation is really the 2nd in disguise, since both lines are just pancaked on top of each other, every point in the lines is a solution or an intersection, and since both go to infinity, well, there you have it.