Use the sum of cubes factoring rule

to transform the left hand side into the right hand side.


Throughout the entire process, the right hand side stayed the same.
On the last step, I used the pythagorean identity.
1. 6a + 2b
2. 9a + 4b
3. 12a + 6b
4. 15a + 8b
5. 18a + 10b
6. 21a + 12b
7. 24a + 14b
8. 27a + 16b
9. 30a + 18b
10. 33a + 20b
11. 36a + 22b
12. 39a + 24b
13. 42a + 26b
14. 45a + 28b
15. 48a + 30b
16. 51a + 32b
17. 54a + 34b
18. 57a + 36b
19. 60a + 38b
20. 63a + 40b
21. 66a + 42b
22. 69a + 44b
23. 71a + 46b
24. 74a + 48b
25. 77a + 50b
26. 80a + 52b
27. 83a + 54b
28. 86a + 56b
29. 89a + 58b
30. 91a + 60b
31. 94a + 62b
32. 97a + 64b
33. 100a + 66b
34. 103a + 68b
35. 109a + 70b
36. 112a + 72b
37. 115a + 74b
38. 118a + 76b
39. 121a + 78b
40. 124a + 80b
Basically, add 3 to every number in front of the a and 2 to every number in front of the b. Or just multiply.
Answer:
the right answer is 486 and if I am right can brainlist
The answer is the same as the question. 1.75
Answer:
Perimeter of the paperboard that remains after the semicircle is removed = 94.26 in
Step-by-step explanation:
Watch the attached figure of how the semi circle is cut out of the rectangular paperboard.
Length = 24 in
Width = 18 in
Radius of the semi circle = Half of the width of the paperboard =
= 9 in
1) Circumference of the semi circle = π*radius
= 3.14*9
= 28.26 in
2) Perimeter of the paperboard that remains after the semicircle is removed
= Top + Left + Bottom + Right Circumference of the semi circle
= 24 + 18 + 24 + 28.26
= 94.26 in