Answer: a = 0.35 m/s²
Explanation:
F = ma
a = F/m = 450/1300 = 0.346153... ≈ 0.35 m/s²
Answer:
In 5 years or so, the sun will be awash in sunspots and more prone to violent bursts of magnetic activity.
Explanation
once the magnetic field weakens the area and cold plasma enters the area of the sunspot
Explanation:
The question says that "Does a 60 kg person running at 4 m/s have more kinetic energy than a 10 gram projectile at 300 m/s ?
"
Speed of a person is 4 m/s
Mass of a person is 60 kg
Kinetic energy of a person is : 
So,

Mass of a projectile is 10 grams or 0.01 kg
Speed of a projectile is 300 m/s
Kinetic energy of a projectile is :


So, it is clear that the kinetic energy of a person is more than that of the kinetic energy of a projectile.
A research question that would complete the third question you need that are related to the first 2 questions which are:
- “what type of masks help prevent fog on glasses when breathing?”
- “does a mask’s material affect the level of fog on glasses as an effect of breathing?”
Would be: "Are there any available masks that could prevent fog on glasses that could be improved upon"?
This new research question would help you find out if there is an already existing mask that could be made better.
<h3>What is a Research Question?</h3>
This refers to "a question that a research project sets out to answer". and seeks to give answers to particular phenomena.
Hence, we can see that the new research question Would be: "Are there any available masks that could prevent fog on glasses that could be improved upon"?
This new research question would help you find out if there is an already existing mask that could be made better.
Read more about research questions here:
brainly.com/question/25257437
#SPJ1
Answer:
(B) 1.6 m/s^2
Explanation:
The equation of the forces acting on the box in the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m = 6.0 kg being the mass of the box, g = 9.8 m/s^2 being the acceleration of gravity,
being the angle of the incline
is the frictional force, with
being the coefficient of kinetic friction, N being the normal reaction of the plane
a is the acceleration
The equation of the force along the direction perpendicular to the slope is

where
is the component of the weight in the direction perpendicular to the slope. Solving for N,

Substituting into (1), solving for a, we find the acceleration:
