Answer:
105 m/s
Explanation:
Given that the speed of train A,
= 45 m/s from west to east.
Speed of train B,
= 60 m/s from east to west.
Train B is moving in the opposite direction with respect to the speed of train A. Assuming that the speed from east to west direction is positive.
So, the speed of train A from east to west= - 45 m/s
The speed of train B w.r.t train A
m/s
Hence, the speed of train B w.r.t train A is 105 m/s from east to west.
Answer:
<em>Magnetic</em><em> </em><em>compass</em><em> </em><em>helps</em><em> </em><em>to </em><em>identify</em><em> </em><em>direction</em><em> </em><em>in </em><em>this </em><em>way </em><em>,</em><em> </em><em>this </em><em>compass</em><em> </em><em>work </em><em>because</em><em> </em><em>of </em><em>earth</em><em> </em><em>magnetic</em><em> field</em><em> </em><em>and </em><em>show</em><em> </em><em>us </em><em>direction</em><em> </em>
<em> </em><em> </em><em>hope</em><em> it</em><em> helps</em><em> and</em><em> your</em><em> day</em><em> will</em><em> be</em><em> full</em><em> of</em><em> happiness</em><em>. </em>^_^
Answer:
V=15.3 m/s
Explanation:
To solve this problem, we have to use the energy conservation theorem:

the elastic potencial energy is given by:

The work is defined as:

this work is negative because is opposite to the movement.
The gravitational potencial energy at 2.5 m aboves is given by:

the gravitational potential energy at the ground and the kinetic energy at the begining are 0.

Answer:
t = 5 hr
Explanation:
Let kali moves toward east with velocity= V₁= 40 km/ h
Mat moves toward west with velocity = V₂= 50 km/hr
As Klai left one hour earlier = t₁= 1 hr
distance traveled in 1st hour = s₁ = v * t = 40 * 1 = 40 km
Remaining distance = 400 - 40 = 360 km
As they move in the opposite directions:
Relative speed= 40 + 50 = 90 km/ h
s = v * t
⇒ t = s / v
⇒ t₂ = 360 / 90
⇒ t₂ = 4 hr
Total time = t = t₁ + t₂
t = 1 hr + 4 hr
t = 5 hr