Answer:
0.47 and 11.53
Step-by-step explanation:
h = 60t − 5t²
27 = 60t − 5t²
5t² − 60t + 27 = 0
Quadratic formula:
x = [ -b ± √(b² − 4ac) ] / 2a
t = [ -(-60) ± √((-60)² − 4(5)(27)) ] / 2(5)
t = (60 ± √3060) / 10
t = 0.47 or 11.53
19% of 30
19 / 30 = 5.7
19 percent of 30 is approx. 5.7
Hope that helps! -Nadia aka UnicornFudge
Answer:
The answer is "9 and 7".
Step-by-step explanation:
Given:
![A=\left[\begin{array}{cc}7&9\\0&9\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D7%269%5C%5C0%269%5Cend%7Barray%7D%5Cright%5D)
Using formula:

![\to |\left[\begin{array}{cc}7&9\\0&9\end{array}\right]-\lambda \left[\begin{array}{cc}1&0\\0&1\end{array}\right] |=0\\\\\\ \to |\left[\begin{array}{cc}7&9\\0&9\end{array}\right]- \left[\begin{array}{cc}\lambda&0\\0&\lambda\end{array}\right] |=0\\\\\\\to|\left[\begin{array}{cc}7-\lambda &9\\0&9-\lambda\end{array}\right]|=0\\\\\\\to|(7-\lambda)(9-\lambda)|=0\\\\\to (7-\lambda)(9-\lambda)=0\\\\\to 7-\lambda=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9-\lambda=0\\\\](https://tex.z-dn.net/?f=%5Cto%20%7C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D7%269%5C%5C0%269%5Cend%7Barray%7D%5Cright%5D-%5Clambda%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%7C%3D0%5C%5C%5C%5C%5C%5C%20%5Cto%20%7C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D7%269%5C%5C0%269%5Cend%7Barray%7D%5Cright%5D-%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Clambda%260%5C%5C0%26%5Clambda%5Cend%7Barray%7D%5Cright%5D%20%7C%3D0%5C%5C%5C%5C%5C%5C%5Cto%7C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D7-%5Clambda%20%269%5C%5C0%269-%5Clambda%5Cend%7Barray%7D%5Cright%5D%7C%3D0%5C%5C%5C%5C%5C%5C%5Cto%7C%287-%5Clambda%29%289-%5Clambda%29%7C%3D0%5C%5C%5C%5C%5Cto%20%287-%5Clambda%29%289-%5Clambda%29%3D0%5C%5C%5C%5C%5Cto%207-%5Clambda%3D0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%209-%5Clambda%3D0%5C%5C%5C%5C)

Answer:
A bisector is something that cuts an object into two equal parts. It is applied to angles and line segments. In verb form, we say that it bisects the other object.