<span>Let r(x,y) = (x, y, 9 - x^2 - y^2)
So, dr/dx x dr/dy = (2x, 2y, 1)
So, integral(S) F * dS
= integral(x in [0,1], y in [0,1]) (xy, y(9 - x^2 - y^2), x(9 - x^2 - y^2)) * (2x, 2y, 1) dy dx
= integral(x in [0,1], y in [0,1]) (2x^2y + 18y^2 - 2x^2y^2 - 2y^4 + 9x - x^3 - xy^2) dy dx
= integral(x in [0,1]) (x^2 + 6 - 2x^2/3 - 2/5 + 9x - x^3 - x/3) dx
= integral(x in [0,1]) (28/5 + x^2/3 + 26x/3 - x^3) dx
= 28/5 + 40/9 - 1/4
= 1763/180 </span>
Honestly online school is better because it’s safer
Answer:
v=3
u=6
x=2√2
y=2√2
Step-by-step explanation:
First triangle :
tanΦ=v/3√3
tan30=v/3√3
(√3)/3=v/(3√3)
Cross multiply
(√3)/3 x 3√3=v
(√3 x 3√3)/3=v
(3√9)/3=v
(3x3)/3=v
9/3=v
3=v
v=3
Sin30=v/u
0.5=3/u
Cross multiply
0.5xu=3
0.5u=3
Divide both sides by 0.5
0.5u/0.5=3/0.5
u=6
Second triangle :
sin45=x/4
Cross multiply
x=4 x sin45
x=4 x (√2)/2
x=2√2
Cos45=y/4
Cross multiply
4 x Cos45=y
4 x (√2)/2=y
(4√2)/2=y
2√2=y
y=2√2
Is thistles ok algebra one or two please mark me brainlist
<span>The system of the equations has no solution; the two lines are parallel.</span>