Let the equal sides of the isosceles Δ ABC be x.
Given that the perimeter of Δ ABC = 50m.
Therefore, 2x + AC = 50 --- (1)
It is also given that the perimeter of Δ ABD = 40m.
Therefore, x + BD + AD = 40
BD is the median of the Δ ABC. Therefore, D is the midpoint of AC.
So AD = CD.
Or, AD =
AC
Therefore, 
Multiply both sides by 2.
2x + 2BD + AC = 80
From (1), 2x + AC = 50.
Therefore, 2BD + 50 = 80
2BD = 80 - 50
2BD = 30
BD = 15m.
Multiply each term by 8 ( to get rid of the fractions)
we get:-
-72 = -16 - k
k = -16 + 72 = 56 answer
Answer:
Step-by-step explanation:
(6x+1)(9x-23)= 6x(9x-23)+1(9x-23)
= 54x²-138+9x-23
= 54x²+9x-161
The answer to your question is 67
Answer:
(9b + 3c + 10d)cm
Step-by-step explanation:
Given the sides of a triangle expressed as (2b+c), (7b + 4d) and (6d+2c). The perimeter of the triangle is the sum of all the sides of the triangles.
Perimeter of the triangle = 2b+c + 7b+4d + 6d+2c
Perimeter of the triangle = 2b + 7b + c + 2c + 4d + 6d
Perimeter of the triangle = 9b + 3c + 10d
Hence the perimeter of the triangle is (9b + 3c + 10d)cm