The three roots of x^3 + 7x^2 + 12x = 0 is 0,-3 and -4
<u>Solution:</u>
We have been given a cubic polynomial.
![x^{3}+7 x^{2}+12 x=0](https://tex.z-dn.net/?f=x%5E%7B3%7D%2B7%20x%5E%7B2%7D%2B12%20x%3D0)
We need to find the three roots of the given polynomial.
Since it is a cubic polynomial, we can start by taking ‘x’ common from the equation.
This gives us:
![x^{3}+7 x^{2}+12 x=0](https://tex.z-dn.net/?f=x%5E%7B3%7D%2B7%20x%5E%7B2%7D%2B12%20x%3D0)
----- eqn 1
So, from the above eq1 we can find the first root of the polynomial, which will be:
x = 0
Now, we need to find the remaining two roots which are taken from the remaining part of the equation which is:
![x^{2}+7 x+12=0](https://tex.z-dn.net/?f=x%5E%7B2%7D%2B7%20x%2B12%3D0)
we have to use the quadratic equation to solve this polynomial. The quadratic formula is:
![x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E%7B2%7D-4%20a%20c%7D%7D%7B2%20a%7D)
Now, a = 1, b = 7 and c = 12
By substituting the values of a,b and c in the quadratic equation we get;
![\begin{array}{l}{x=\frac{-7 \pm \sqrt{7^{2}-4 \times 1 \times 12}}{2 \times 1}} \\\\{x=\frac{-7 \pm \sqrt{1}}{2}}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7Bx%3D%5Cfrac%7B-7%20%5Cpm%20%5Csqrt%7B7%5E%7B2%7D-4%20%5Ctimes%201%20%5Ctimes%2012%7D%7D%7B2%20%5Ctimes%201%7D%7D%20%5C%5C%5C%5C%7Bx%3D%5Cfrac%7B-7%20%5Cpm%20%5Csqrt%7B1%7D%7D%7B2%7D%7D%5Cend%7Barray%7D)
<em><u>Therefore, the two roots are:</u></em>
![\begin{array}{l}{x=\frac{-7+\sqrt{1}}{2}=\frac{-7+1}{2}=\frac{-6}{2}} \\\\ {x=-3}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7Bx%3D%5Cfrac%7B-7%2B%5Csqrt%7B1%7D%7D%7B2%7D%3D%5Cfrac%7B-7%2B1%7D%7B2%7D%3D%5Cfrac%7B-6%7D%7B2%7D%7D%20%5C%5C%5C%5C%20%7Bx%3D-3%7D%5Cend%7Barray%7D)
And,
![\begin{array}{c}{x=\frac{-7-\sqrt{1}}{2}} \\\\ {x=-4}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bc%7D%7Bx%3D%5Cfrac%7B-7-%5Csqrt%7B1%7D%7D%7B2%7D%7D%20%5C%5C%5C%5C%20%7Bx%3D-4%7D%5Cend%7Barray%7D)
Hence, the three roots of the given cubic polynomial is 0, -3 and -4