<em>Answer: h = 120 ft; w = 80 ft </em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
<em>Step-by-step explanation: Let h and w be the dimensions of the playground. The area is given by:</em>
<em></em>
<em>A = h*w (eq1)</em>
<em></em>
<em>The total amount of fence used is:</em>
<em></em>
<em>L = 2*h + 2*w + w (eq2) (an extra distance w beacuse of the division)</em>
<em></em>
<em>Solving for w:</em>
<em></em>
<em>w = L - 2/3*h = 480 - 2/3*h (eq3) Replacing this into the area eq:</em>
<em></em>
<em></em>
<em></em>
<em>We derive this and equal zero to find its maximum:</em>
<em></em>
<em> Solving for h:</em>
<em></em>
<em>h = 120 ft. Replacing this into eq3:</em>
<em></em>
<em>w = 80ft</em>
<em></em>
<em>Therefore the maximum area is:</em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
Answer:
12.1 repeating
Step-by-step explanation:
73/6=12.16666666...
Answer:
<h3>
f(x) = - ⁴/₉(x - 3)² + 6</h3>
Step-by-step explanation:
The vertex form of the equation of the parabola with vertex (h, k) is:
f(x) = a(x - h)² + k
So for vertex (3, 6) it will be:
f(x) = a(x - 3)² + 6
<u>y intercept: 2</u> means f(0) = 2
f(0) = a(0 - 3)² + 6
2 = a(-3)² + 6
2 -6 = 9a + 6 -6
-4 = 9a
a = ⁻⁴/₉
Therefore:
The vertex form of quardatic function with vertex: (3,6) and y intercept: 2 is
<u>f(x) = - ⁴/₉(x - 3)² + 6</u>
Answer:
i wonder why
Step-by-step explanation: