Answer:
y-coordinate = 0
Step-by-step explanation:
Consider the below diagram attached with this question.
Section formula:
If a point divides a line segment in m:n whose end points are
and
, then the coordinates of that point are

From the below graph it is clear that the coordinates of end points are J(1,-10) and K(7,2). A point divides the line JK is 5:1.
Using section formula, the coordinates of that point are




Therefore, the y-coordinate of the point that divides the directed line segment from J to k into a ratio of 5:1 is 0.
Answer:
Systolic on right

Systolic on left

So for this case we have more variation for the data of systolic on left compared to the data systolic on right but the difference is not big since 0.170-0.147 = 0.023.
Step-by-step explanation:
Assuming the following data:
Systolic (#'s on right) Diastolic (#'s on left)
117; 80
126; 77
158; 76
96; 51
157; 90
122; 89
116; 60
134; 64
127; 72
122; 83
The coefficient of variation is defined as " a statistical measure of the dispersion of data points in a data series around the mean" and is defined as:

And the best estimator is 
Systolic on right
We can calculate the mean and deviation with the following formulas:
[te]\bar x = \frac{\sum_{i=1}^n X_i}{n}[/tex]

For this case we have the following values:

So then the coeffcient of variation is given by:

Systolic on left
For this case we have the following values:

So then the coeffcient of variation is given by:

So for this case we have more variation for the data of systolic on left compared to the data systolic on right but the difference is not big since 0.170-0.147 = 0.023.
Answer:im bored
Step-by-step explanation:
Hello,
In order to be simple: let's code hexadecimal numbers on 4 digits.
Example: 500-200=300 (in décimal)
Explanation:
There may be a more direct way to do this, but here's one way. We make no claim that the statements used here are on your menu of statements.
<u>Statement</u> . . . . <u>Reason</u>
2. ∆ADB, ∆ACB are isosceles . . . . definition of isosceles triangle
3. AD ≅ BD
and ∠CAE ≅ ∠CBE . . . . definition of isosceles triangle
4. ∠CAE = ∠CAD +∠DAE
and ∠CBE = ∠CBD +∠DBE . . . . angle addition postulate
5. ∠CAD +∠DAE ≅ ∠CBD +∠DBE . . . . substitution property of equality
6. ∠CAD +∠DAE ≅ ∠CBD +∠DAE . . . . substitution property of equality
7. ∠CAD ≅ ∠CBD . . . . subtraction property of equality
8. ∆CAD ≅ ∆CBD . . . . SAS congruence postulate
9. ∠ACD ≅ ∠BCD . . . . CPCTC
10. DC bisects ∠ACB . . . . definition of angle bisector