Answer:

Step-by-step explanation:
Vertex form of a quadratic equation;

Vertex of the parabolas (h, k)
The vertex of the parabola is either the minimum or maximum of the parabola. The axis of symmetry goes through the x-coordinate of the vertex, hence h = -3. The minimum of the parabola is the y-coordinate of the vertex, so k= 7. Now substitute it into the formula;

Now substitute in the given point; ( -1, 9) and solve for a;

Hence the equation in vertex form is;

In standard form it is;

No I don’t think so (&/&/ need extra characters)
Answer:
In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced A equals B.[1][2] The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.
Step-by-step explanation:
For example:
{\displaystyle x=y}x=y means that x and y denote the same object.[3]
The identity {\displaystyle (x+1)^{2}=x^{2}+2x+1}{\displaystyle (x+1)^{2}=x^{2}+2x+1} means that if x is any number, then the two expressions have the same value. This may also be interpreted as saying that the two sides of the equals sign represent the same function.
{\displaystyle \{x\mid P(x)\}=\{x\mid Q(x)\}}{\displaystyle \{x\mid P(x)\}=\{x\mid Q(x)\}} if and only if {\displaystyle P(x)\Leftrightarrow Q(x).}{\displaystyle P(x)\Leftrightarrow Q(x).} This assertion, which uses set-builder notation, means that if the elements satisfying the property {\displaystyle P(x)}P(x) are the same as the elements satisfying {\displaystyle Q(x),}{\displaystyle Q(x),} then the two uses of the set-builder notation define the same set. This property is often expressed as "two sets that have the same elements are equal." It is one of the usual axioms of set theory, called axiom of extensionality.[4]
Answer:
of quinoa,
of flaxseed,
of soy protein.
Step-by-step explanation:
<h3>
The missing table is attached.</h3>
Let be "q" the amount of cups of quinoa you'd need to use making the granolas with 3 cups of oats.
Based on the table you can write the following proportion:

Solving for "q", you get:

Let be "f" the amount of cups of flaxseed you'd need to use making the granolas with 3 cups of oats.
With the data given in the table you can write the following proportion:

Solving for "f", you get:

Let be "s" the amount of cups of soy protein you'd need to use making the granolas with 3 cups of oats.
Using the table you can write this proportion:

Solving for "s", you get:
