Answer:
b=20 yards
Step-by-step explanation:
15^2+x^2=25^2
225+x^2=625
x^2=400
x=20
Answer:
<em>T</em><em>H</em><em>E</em><em> </em><em>S</em><em>C</em><em>A</em><em>L</em><em>E</em><em> </em><em>F</em><em>A</em><em>C</em><em>T</em><em>O</em><em>R</em><em> </em><em>O</em><em>F</em><em> </em><em>S</em><em>C</em><em>U</em><em>L</em><em>P</em><em>T</em><em>U</em><em>R</em><em>E</em><em> </em><em>T</em><em>O</em><em> </em><em>M</em><em>O</em><em>D</em><em>A</em><em>L</em><em>=</em><em>7</em><em>:</em><em>1</em>
<em>A</em><em>S</em><em> </em><em>4</em><em>2</em><em>:</em><em>6</em><em>=</em><em>7</em><em>:</em><em>1</em><em>,</em><em>5</em><em>6</em><em>:</em><em>8</em><em>=</em><em>7</em><em>:</em><em>1</em><em>,</em><em>3</em><em>5</em><em>:</em><em>5</em><em>=</em><em>7</em><em>:</em><em>1</em>
Dont click or go on that link
Step-by-step explanation:
<h2>
<em><u>concept :</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10or, y = (5/4)x(5/2).</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>1</em><em>)</em></h2><h2 /><h2>
<em><u>5y + 4x = 35</u></em></h2><h2 /><h2>
<em><u>5y + 4x = 35ory = (-4/5)x + 7.</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>2</em><em>)</em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1Hence, the lines are perpendicular.</u></em></h2>
Answer: 12x + 9
Step-by-step explanation:
<u>Given </u>
(6 + 5x) + (7x + 3)
<u>Put like terms together</u>
=5x + 7x + 6 + 3
<u>Combine like terms </u>
=
Hope this helps!! :)
Please let me know if you have any questions