1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
3 years ago
5

Initially, there were equal amount of roses and tulips at a store. Each bouquet was made with 3 roses and 4 tulips. After the bo

uquets were all made, there were 30 roses and 18 tulips left in the store. How many bouquets were made?
Mathematics
2 answers:
egoroff_w [7]3 years ago
5 0

Answer:

12 bouquets

Step-by-step explanation:

Let there be x number of roses and x number of tulips initially at the store.  Each bouquet was made with 3 roses and 4 tulips. Assume that y bouquets were made in total.

If each bouquet was made with 3 roses and 4 tulips, then y bouquets will be made with 3y roses and 4y tulips.

After the bouquets were all made, there were 30 roses and 18 tulips left in the store. This means, if we subtract number of roses that were used in bouquets from total number of roses, the result must be 30. Likewise, for tulips the result would be 18. This can be represented as:

x - 3y = 30                               Equation 1

x  - 4y = 18                                Equation 2

Subtracting Equation 2 from Equation 1, we get:

x - 3y - (x - 4y) = 30 - 18

x - 3y - x + 4y = 12

y = 12

Since y represents the number of bouquets made, we can conclude that 12 bouquets were made in the store.

Bogdan [553]3 years ago
3 0

Answer:

12 bouquets were made

Initially : 66 roses and 66 tulips  

Step-by-step explanation:

T=total amount of flowers

b=bouquets made

T/2-3b = 30 (half of  total minus 3 roses per bouquet equal 30)

T/2-4b = 18 (half of total minus 4 tulips per bouquet equal 18)

I will multiply the second by -1   (elimination method)

T/2  -  3b =  30

-T/2 +  4b= -18

Add both:

0+  1b = 12    (12 bouquets)

     ROSES                                          TULIPS

(T/2)-(3*12)=30                                     (T/2)-(4*12)=18

T/2 -36 = 30                                            T-48=18

T /2  =   66 (66 roses)                            T/2= 66 (66 tulips)

      T/2 + T/2 = TOTAL=  132   flowers initially

36 + 48 + 30 + 18 = 132

You might be interested in
I need your help on this one pls its another one but different question<br> and please dont guess
Ainat [17]

Answer:

All except the second one (angle g is not similar to angle r)

Step-by-step explanation:

Just look at the order of the letters. It it's the same, its similar.

4 0
3 years ago
Solve the system of equations using the addition method 2a+3b=-1 ; 3a+5b=-2
Alexeev081 [22]

Answer:

Then, a=-1 and b=-1

Step-by-step explanation:

We need to solve the following system of equations using the adition method:

2a+3b=-1       (i)

3a+5b=-2      (ii)

First, we multiply the equation (i) by -3 and the equation (ii) by 2, so we get:

-6a-9b=3

6a+10b=-4

Adding the two equations we have:

-6a-9b=3

6a+10b=-4

--------------------------

 0  + b = -1

Then b=-1. Now, let's substitute the value of b into equation (i):

2a+3b=-1

2a + 3(-1) = -1

2a -3 = -1

2a = 2

a = 1

Then, a=-1 and b=-1

3 0
4 years ago
Read 2 more answers
Plssssssssssssssssssssssssssssssssssssssssssssss
eduard

Answer:

34 hours

Step-by-step explanation:

Lets call M the number of hours that Maddie volunteered. Ryan volunteered 1 + 3×M hours, and altogether they volunteered 45 hours, so:

1 + 3×M + M = 45

1 + 4M = 45 Subtract 1 in both sides

4M = 44 Divide both sides by 4

M = 11 hours

So Maddie volunteered 11 hours, and Ryan volunteered

1 + 3×11 = 34 hours

3 0
2 years ago
Here 1 more than BIG PRIZE
Firlakuza [10]
Hey there! :D

Use the distributive property.

a(b+c)= ab+ac

6(9x+2)+2x

54x+12+2x

56x+ 12 <== equivalent expression

I hope this helps!
~kaikers
4 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Other questions:
  • Give two points with integer coordinates that have a slope of 10/7 between them
    10·1 answer
  • Use the product to simplify the expression
    13·1 answer
  • translate this verbal expression to a algebraic expression eight more than six times a number added to one more than nine times
    7·1 answer
  • I need help please and thank you
    7·1 answer
  • How do I solve 8/3=(y-9)/(7y+4)
    6·1 answer
  • What is the equation of the following graph in vertex form?
    8·2 answers
  • a fraction has a denominator that is 4 greater than its numerator. it is equivalent to 9/15. what is the fraction?
    11·1 answer
  • Find the area of the square ABCD.
    7·1 answer
  • The quotient of a number and 3 is 8
    9·1 answer
  • Estimate the product. 3 1/3 x 4 1/8 =
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!