1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crazy boy [7]
3 years ago
13

What is the common difference for the arithmetic sequence -5,-1,3,7

Mathematics
1 answer:
weeeeeb [17]3 years ago
4 0

Answer: 4

-5+4=-1

-1+4=3

3+4=7

I hope this is good enough:

You might be interested in
PLZZZZZZZ I AM BEGGING U I WILL GIVE BRAINLIEST AND A THANKYOU PLZZZZZZZZZZZZZZZZZ Find the distance between (1, 7) and (-2, -4)
9966 [12]
Use the coordinate geometry formula to solve. You'll definitely get the answer.
7 0
3 years ago
Read 2 more answers
Find the lateral area of the prism.<br><br> 120 sq. in.<br> 150 sq. in.<br> 720 sq. in.
mylen [45]

For this case, we must find the lateral area of the pentagonal prism shown in the figure.

By definition:

A_ {l} = P_ {b} * h

Where:

A_{l}: Is the lateral area

P_ {b}: It is the perimeter of the base

h: It's the height

Substituting the values we have:

A_ {l} = 20 \ in * 6 \ in\\A_ {l} = 120 \ in ^ 2

Answer:

A_ {l} = 120 \ in ^ 2

3 0
3 years ago
PLEASE HELP FOR BOTH 5 and 6
vekshin1

5- How do you go to school everyday? Or who picks you up from home to school,
6- Students.
5 0
3 years ago
Assume a jar has five red marbles and three black marbles. Draw out two marbles with and without replacement. Find the requested
Doss [256]

Answer:

<u>For probabilities with replacement</u>

P(2\ Red) = \frac{25}{64}

P(2\ Black) = \frac{9}{64}

P(1\ Red\ and\ 1\ Black) = \frac{15}{32}

P(1st\ Red\ and\ 2nd\ Black) = \frac{15}{64}

<u>For probabilities without replacement</u>

P(2\ Red) = \frac{5}{14}

P(2\ Black) = \frac{3}{28}

P(1\ Red\ and\ 1\ Black) = \frac{15}{28}

P(1st\ Red\ and\ 2nd\ Black) = \frac{15}{56}

Step-by-step explanation:

Given

Marbles = 8

Red = 5

Black = 3

<u>For probabilities with replacement</u>

(a) P(2 Red)

This is calculated as:

P(2\ Red) = P(Red)\ and\ P(Red)

P(2\ Red) = P(Red)\ *\ P(Red)

So, we have:

P(2\ Red) = \frac{n(Red)}{Total} \ *\ \frac{n(Red)}{Total}\\

P(2\ Red) = \frac{5}{8} * \frac{5}{8}

P(2\ Red) = \frac{25}{64}

(b) P(2 Black)

This is calculated as:

P(2\ Black) = P(Black)\ and\ P(Black)

P(2\ Black) = P(Black)\ *\ P(Black)

So, we have:

P(2\ Black) = \frac{n(Black)}{Total}\ *\ \frac{n(Black)}{Total}

P(2\ Black) = \frac{3}{8}\ *\ \frac{3}{8}

P(2\ Black) = \frac{9}{64}

(c) P(1 Red and 1 Black)

This is calculated as:

P(1\ Red\ and\ 1\ Black) = [P(Red)\ and\ P(Black)]\ or\ [P(Black)\ and\ P(Red)]

P(1\ Red\ and\ 1\ Black) = [P(Red)\ *\ P(Black)]\ +\ [P(Black)\ *\ P(Red)]

P(1\ Red\ and\ 1\ Black) = 2[P(Red)\ *\ P(Black)]

So, we have:

P(1\ Red\ and\ 1\ Black) = 2*[\frac{5}{8} *\frac{3}{8}]

P(1\ Red\ and\ 1\ Black) = 2*\frac{15}{64}

P(1\ Red\ and\ 1\ Black) = \frac{15}{32}

(d) P(1st Red and 2nd Black)

This is calculated as:

P(1st\ Red\ and\ 2nd\ Black) = [P(Red)\ and\ P(Black)]

P(1st\ Red\ and\ 2nd\ Black) = P(Red)\ *\ P(Black)

P(1st\ Red\ and\ 2nd\ Black) = \frac{n(Red)}{Total}  *\ \frac{n(Black)}{Total}

So, we have:

P(1st\ Red\ and\ 2nd\ Black) = \frac{5}{8} *\frac{3}{8}

P(1st\ Red\ and\ 2nd\ Black) = \frac{15}{64}

<u></u>

<u>For probabilities without replacement</u>

(a) P(2 Red)

This is calculated as:

P(2\ Red) = P(Red)\ and\ P(Red)

P(2\ Red) = P(Red)\ *\ P(Red)

So, we have:

P(2\ Red) = \frac{n(Red)}{Total} \ *\ \frac{n(Red)-1}{Total-1}

<em>We subtracted 1 because the number of red balls (and the total) decreased by 1 after the first red ball is picked.</em>

P(2\ Red) = \frac{5}{8} * \frac{4}{7}

P(2\ Red) = \frac{5}{2} * \frac{1}{7}

P(2\ Red) = \frac{5}{14}

(b) P(2 Black)

This is calculated as:

P(2\ Black) = P(Black)\ and\ P(Black)

P(2\ Black) = P(Black)\ *\ P(Black)

So, we have:

P(2\ Black) = \frac{n(Black)}{Total}\ *\ \frac{n(Black)-1}{Total-1}

<em>We subtracted 1 because the number of black balls (and the total) decreased by 1 after the first black ball is picked.</em>

P(2\ Black) = \frac{3}{8}\ *\ \frac{2}{7}

P(2\ Black) = \frac{3}{4}\ *\ \frac{1}{7}

P(2\ Black) = \frac{3}{28}

(c) P(1 Red and 1 Black)

This is calculated as:

P(1\ Red\ and\ 1\ Black) = [P(Red)\ and\ P(Black)]\ or\ [P(Black)\ and\ P(Red)]

P(1\ Red\ and\ 1\ Black) = [P(Red)\ *\ P(Black)]\ +\ [P(Black)\ *\ P(Red)]

P(1\ Red\ and\ 1\ Black) = [\frac{n(Red)}{Total}\ *\ \frac{n(Black)}{Total-1}]\ +\ [\frac{n(Black)}{Total}\ *\ \frac{n(Red)}{Total-1}]

So, we have:

P(1\ Red\ and\ 1\ Black) = [\frac{5}{8} *\frac{3}{7}] + [\frac{3}{8} *\frac{5}{7}]

P(1\ Red\ and\ 1\ Black) = [\frac{15}{56} ] + [\frac{15}{56}]

P(1\ Red\ and\ 1\ Black) = \frac{30}{56}

P(1\ Red\ and\ 1\ Black) = \frac{15}{28}

(d) P(1st Red and 2nd Black)

This is calculated as:

P(1st\ Red\ and\ 2nd\ Black) = [P(Red)\ and\ P(Black)]

P(1st\ Red\ and\ 2nd\ Black) = P(Red)\ *\ P(Black)

P(1st\ Red\ and\ 2nd\ Black) = \frac{n(Red)}{Total}  *\ \frac{n(Black)}{Total-1}

So, we have:

P(1st\ Red\ and\ 2nd\ Black) = \frac{5}{8} *\frac{3}{7}

P(1st\ Red\ and\ 2nd\ Black) = \frac{15}{56}

7 0
3 years ago
Please answer and hurry
olya-2409 [2.1K]

Answer:

35hDhgs

Step-by-step explanation:

:+hrhdgkzgwcakgsna is Reddit Diego first Andy showed some eggs degree cost

6 0
3 years ago
Other questions:
  • jasper wants to paint one wall of his room. if the wall is 12 feet wide and 10 feet tall, what is the area of the wall?
    5·1 answer
  • All of the students of music high school are in the band, the orchestra, or both. 80 percent of the students are in only one gro
    9·1 answer
  • What is the volume of this figure?
    12·1 answer
  • I know this has already been answered but im still a little confused 19x+rx=-37x+w
    15·1 answer
  • Forty is what percent of 125?
    9·2 answers
  • The manufacturer's suggested retail price (MSRP) for a particular car is $25,425, and it is expected to be
    7·1 answer
  • Which postulate or theorem proves that these two triangles are congruent?
    15·1 answer
  • Which of the following sets is NOT closed under addition.
    13·1 answer
  • The cost of 2 ounces of pure gold was $2,640. How much did it cost for 1 ounce of pure gold?
    12·1 answer
  • ★PLSSSSS HELPPPPPPPPP★
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!