9514 1404 393
Answer:
(i) x° = 70°, y° = 20°
(ii) ∠BAC ≈ 50.2°
(iii) 120
(iv) 300
Step-by-step explanation:
(i) Angle x° is congruent with the one marked 70°, as they are "alternate interior angles" with respect to the parallel north-south lines and transversal AB.
x = 70
The angle marked y° is the supplement to the one marked 160°.
y = 20
__
(ii) The triangle interior angle at B is x° +y° = 70° +20° = 90°, so triangle ABC is a right triangle. With respect to angle BAC, side BA is adjacent, and side BC is opposite. Then ...
tan(∠BAC) = BC/BA = 120/100 = 1.2
∠BAC = arctan(1.2) ≈ 50.2°
__
(iii) The bearing of C from A is the sum of the bearing of B from A and angle BAC.
bearing of C = 70° +50.2° = 120.2°
The three-digit bearing of C from A is 120.
__
(iv) The bearing of A from C is 180 added to the bearing of C from A:
120 +180 = 300
The three-digit bearing of A from C is 300.
9514 1404 393
Answer:
300 g
Step-by-step explanation:
The problem statement tells us ...
36g = 0.12×d . . . . . where d represents the daily value
36g/0.12 = d = 300g . . . . divide by the coefficient of d
300 g of carbohydrates per day are recommended.
Answer: see below
Step-by-step explanation:
30 - 60 - 90 triangles have angles in the triangle measuring 30, 60, and 90 degrees. A 30 - 60 - 90 triangle also has special side ratios according to a side's location in the triangle.
The side across from the 30 degree angle is represented by x.
The side across from the 60 degree angle is represented by x
.
The side across from the 90 degree angle is represented by 2x.
45 - 45 - 90 triangles have angles in the triangle measuring 45, 45, and 90 degrees. A 45 - 45 - 90 triangle has special side ratios similar to the 30 - 60 - 90 triangle.
The side across from either of the 45 degree angles is represented by x.
The side across from the 90 degree angle is represented by x
.
These ratios can be used to find missing sides. If you know that a triangle is one of these special triangles and you also know one of its side lengths, you can plug the known length in for x in the proper place.
EX: you have a 30 - 60 - 90 triangle with a side length of 2 across from the 30 degree angle. You then know that the side across from 60 is 2
and the side across from 90 is 4.
When you are looking for the answer in this type of scenario you do.
I=PRT (interest = price•rate•time)
I = $1900•$155•25 (you add the two times)
I = $7,362,500
Hope this helps.