Answer:
Speed = 0.00392 m/s
Explanation:
Solution:
Frequency of the radio = 85 MHz
If we have the frequency, we can calculate the wavelength of the radio wave.
As we know,
Frequency = speed of light/wavelength
wavelength = c/f
c = speed of light = 3 x
m/s
So,
Wavelength = 3 x
m/s / 85 x
Hz
Wavelength = 3.5294 m
Man gets disturbed reception at t = 15 min
t = 15 x 60 = 900 s
t = 900 s
Speed = distance/time
Here, distance is wavelength. So,
Speed = 3.5294 m / 900 s
Speed = 0.00392 m/s
Hence, the man's car is going with speed of 0.00392 m/s
Answer:
Explanation:
When an moving electric charge passes through a uniform magnetic field
its motion becomes circular .
If m be the mass v be the velocity , q be the charge on the mass B be the magnetic field and R be the radius of circular path
force on the moving charge created by magnetic field
= B q v
Centripetal force required for circular motion
= m v² / R
For balancing
B q v = m v² / R
v = B q R / m
Time period of rotation
T = 2π R / v
= 2 π R m / B q R
= 2 π m / B q
For first particle
T₁ = 2 π m₁ / B q₁
For second particle
T₂ = 2 π m₂ / B q₂
q₁ = q₂ and 10 m₁ = m₂ ( given )
Putting the values in second equation
T₂ = 2 π 10 m₁ / B q₁
= 10 x 2 π m₁ / B q₁
= 10 T₁
Given T₁ = T
T₂ = 10 T
In a spectrum of visible light, we will see that red appears to have a longer wavelength than the blue light. Since wavelength and frequency are inversely proportional then, red will have a smaller frequency than does the blue light.
Answer:
During charging by conduction, both objects acquire the same type of charge. If a negative object is used to charge a neutral object, then both objects become charged negatively. ... In this case, electrons are transferred from the neutral object to the positively charged rod and the sphere becomes charged positively.
<span>AS T1,T2,T3 are the tensions in the ropes,assuming that there are Three blocks of mass 3m, 2m, and m.T3 is the string between 3m and 2m,T2 is the string between 2m and m ,T1 is the string attached to m thus T1 pulls the whole set of blocks along, so it must be the largest. T2 pulls the last
two masses, but T3 only pulls the last mass, so T3 < T2 < T1.</span>