Answer:
the pilot should head the plane
towarrds south- west
Solution:
The airspeed of the airplane, v = 280 km/h
The velocity of the wind, v' = 52 km/h South-west
Angle, 
Now, measured angle in the clockwise direction from North:

Now,



south- west
Answer:
10392.30N
Explanation:
We proceed by computing the individual force exerted by the boats
For the first boat
The angle is 30 degree to the vertical
Hence
Force = F cos θ
F=6000 cos 30
F=6000*0.866
F=5196.15 N
Since the boats are two and also at the same angle and also exerting the same force
The Net force = 2*5196.15
Net force=10392.30N
<span>EP (potential energy) = mgy -> (59)(9.8)(-5) = -2,891
EP + EK (kinetic energy) = 0; but rearranging it for EK makes it EK = -EP, such that EK = 2891 when plugged in.
EK = 0.5mv^2, but can also be v = sqrt(2EK/m).
Plugging that in for sqrt((2 * 2891)/59), we get 9.9 m/s^2 with respect to significant figures.</span>
We want to calculate the distance covered by the drag racer. Recall, the formula for calculating distance is expressed as
Distance = speed x time
From the information given,
speed = 320 m/s
time = 4.5 s
By substituting these values into the formula, we have
Distance = 320 m/s x 4.5s
s cancels out. We are left with m. Thus,
Distance = 1440m
Answer:
Potential Energy to Kenetic Energy
Explanation:
When holding a ball in the air, the ball has potential energy. Once you drop the ball, the ball gains Kenetic Energy