Answer:
At the U.S. Open Tennis Championship a statistician keeps track of every serve that a player hits during the tournament. The statistician reported that the mean serve speed of a particular player was 95 miles per hour. Suppose that the statistician indicated that the serve speed distribution was skewed to the left. Which of the following values is most likely the value of the median serve speed? Explain your answer.
Step-by-step explanation:
At the U.S. Open Tennis Championship a statistician keeps track of every serve that a player hits during the tournament. The statistician reported that the mean serve speed of a particular player was 95 miles per hour. Suppose that the statistician indicated that the serve speed distribution was skewed to the left. Which of the following values is most likely the value of the median serve speed? Explain your answer.
a. What is the probability that both selected setups are for laptop computers?
b. What is the probability that both selected setups are desktop machines?
c. What is the probability that at least one selected setup is for a desktop computer?
d. What is the probability that at least one computer of each type is chosen for setup?
Answer:
The length of the side adjacent to that angle is 26 units
Step-by-step explanation:
We are given
In a right triangle, the side opposite a 33 degree angle is 17 units
Firstly, we will draw diagram
we can use trig

now, we can solve for x


So,
The length of the side adjacent to that angle is 26 units
Answer:
96 square inches.
Step-by-step explanation:
The formula to finding volume of cube/rectangular shaped objects is:
length x width x height
length = 8
height = 4
width = 3
8 x 4 x 3 = 96
96 square inches
Answer:
(a) The expected number of should a salesperson expect until she finds a customer that makes a purchase is 0.9231.
(b) The probability that a salesperson helps 3 customers until she finds the first person to make a purchase is 0.058.
Step-by-step explanation:
Let<em> </em>the random variable <em>X</em> be defined as the number of customers the salesperson assists before a customer makes a purchase.
The probability that a customer makes a purchase is, <em>p</em> = 0.52.
The random variable <em>X</em> follows a Geometric distribution since it describes the distribution of the number of trials before the first success.
The probability mass function of <em>X</em> is:

The expected value of a Geometric distribution is:

(a)
Compute the expected number of should a salesperson expect until she finds a customer that makes a purchase as follows:


This, the expected number of should a salesperson expect until she finds a customer that makes a purchase is 0.9231.
(b)
Compute the probability that a salesperson helps 3 customers until she finds the first person to make a purchase as follows:

Thus, the probability that a salesperson helps 3 customers until she finds the first person to make a purchase is 0.058.
The answer is b because are congruent