Answer:
I don't see all the options for #76, but the shape is a parallelogram.
Using the binomial distribution, it is found that there is a 0% probability that fewer that 5 in a sample of 20 pills will be acceptable.
For each pill, there are only two possible outcomes, either it is acceptable, or it is not. The probability of a pill being acceptable is independent of any other pill, which means that the binomial distribution is used to solve this question.
Binomial probability distribution
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- The sample has 20 pills, hence
.
- 100 - 4 = 96% are acceptable, hence

The probability that <u>fewer that 5 in a sample of 20 pills</u> will be acceptable is:

In which






0% probability that fewer that 5 in a sample of 20 pills will be acceptable.
A similar problem is given at brainly.com/question/24863377
Each washing machine is $390 and the first washing machine is better because its marked down all the way in stead of a discount, meaning that the tax will be lower (I think)
"The intersection (∩) of a pair of sets (G and H) is a third set (I) composed by the elements that belong, at the same time, to both given sets."
According to this definition:
Given the sets:
G = {3, 7, 8, 9}
H = {2, 5, 7, 8}
The Intersection is:
G ∩ H = I = {7, 8}
:-)
Answer:
For bbff we have only 6.3% probability
Step-by-step explanation:
If the parents are heterozygous for both traits, them they are represented by:
BbFf × BbFf
Parent 1: BbFf
Parent 2: BbFf
We have to find the percentage of occurence of bb × ff, which is a child that has blue eyes and no freckles, with no dominant factor.
By distributing the possibilities in a Punnett square, <em>vide</em> picture. We have the following possibilities:
Genotype Count Percent
bBfF 4 25
BBfF 2 12.5
bBFF 2 12.5
bBff 2 12.5
bbfF 2 12.5
BBFF 1 6.3
BBff 1 6.3
bbFF 1 6.3
bbff 1 6.3
For bbff we have only 6.3% probability