Answer:
Following is given the solution of your question as required.
All the necessary descriptions are given in form of comments,
Sample output are also shown.
I hope it will help you!
Explanation:
Answer:
Explanation:
Number of ways to select 10 girls in 35C₁₀
Number of ways to select 10 boys in 35C₁₀
Total Number of ways to select is 35C₁₀ x 35C₁₀
The recursive function would work like this: the n-th odd number is 2n-1. With each iteration, we return the sum of 2n-1 and the sum of the first n-1 odd numbers. The break case is when we have the sum of the first odd number, which is 1, and we return 1.
int recursiveOddSum(int n) {
if(2n-1==1) return 1;
return (2n-1) + recursiveOddSum(n-1);
}
To prove the correctness of this algorithm by induction, we start from the base case as usual:

by definition of the break case, and 1 is indeed the sum of the first odd number (it is a degenerate sum of only one term).
Now we can assume that
returns indeed the sum of the first n-1 odd numbers, and we have to proof that
returns the sum of the first n odd numbers. By the recursive logic, we have

and by induction,
is the sum of the first n-1 odd numbers, and 2n-1 is the n-th odd number. So,
is the sum of the first n odd numbers, as required:
