Question
Initially, the baton is spinning about a line through its center at angular velocity 3.00 rad/s. What is its angular momentum? Express your answer in kilogram meters squared per second.
Answer:

Explanation:
The angular momentum L of the baton moving about an axis perpendicular to it, passing through the center of the baton is,

Here, l is the length of the baton.
Substitute 0.120 kg for m, 3 rads/s for ![\omega[\tex] and 0.8 m for l [tex]\begin{array}{c}\\L = \frac{1}{{12}}m{l^2}\omega \\\\ = \frac{1}{{12}}\left( {0.120{\rm{ kg}}} \right){\left( {{\rm{80}}{\rm{.0 cm}}} \right)^2}{\left( {\frac{{1 \times {{10}^{ - 2}}{\rm{m}}}}{{1{\rm{ cm}}}}} \right)^2}\left( {{\rm{3}}{\rm{.00 rad/s}}} \right)\\\\ = 0.0192{\rm{ kg}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/s}}\\\end{array}](https://tex.z-dn.net/?f=%5Comega%5B%5Ctex%5D%20and%200.8%20m%20for%20l%20%5Btex%5D%5Cbegin%7Barray%7D%7Bc%7D%5C%5CL%20%3D%20%5Cfrac%7B1%7D%7B%7B12%7D%7Dm%7Bl%5E2%7D%5Comega%20%5C%5C%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B%7B12%7D%7D%5Cleft%28%20%7B0.120%7B%5Crm%7B%20kg%7D%7D%7D%20%5Cright%29%7B%5Cleft%28%20%7B%7B%5Crm%7B80%7D%7D%7B%5Crm%7B.0%20cm%7D%7D%7D%20%5Cright%29%5E2%7D%7B%5Cleft%28%20%7B%5Cfrac%7B%7B1%20%5Ctimes%20%7B%7B10%7D%5E%7B%20-%202%7D%7D%7B%5Crm%7Bm%7D%7D%7D%7D%7B%7B1%7B%5Crm%7B%20cm%7D%7D%7D%7D%7D%20%5Cright%29%5E2%7D%5Cleft%28%20%7B%7B%5Crm%7B3%7D%7D%7B%5Crm%7B.00%20rad%2Fs%7D%7D%7D%20%5Cright%29%5C%5C%5C%5C%20%3D%200.0192%7B%5Crm%7B%20kg%7D%7D%20%5Ccdot%20%7B%7B%5Crm%7Bm%7D%7D%5E%7B%5Crm%7B2%7D%7D%7D%7B%5Crm%7B%2Fs%7D%7D%5C%5C%5Cend%7Barray%7D)
The correct answer that would best complete the given statement above is the term QUARKS. The particles that make up protons and neutrons and are thought to be basic units of matter are quarks. <span>A quark is an elementary particle and a fundamental constituent of matter. Hope this answers your question. Have a great day!</span>
Answer:
1) an observer in B 'sees the two simultaneous events
2)observer B sees that the events are not simultaneous
3) Δt = Δt₀ /√ (1 + v²/c²)
Explanation:
This is an exercise in simultaneity in special relativity. Let us remember that the speed of light is the same in all inertial systems
1) The events are at rest in the reference system S ', so as they advance at the speed of light which is constant, so it takes them the same time to arrive at the observation point B' which is at the point middle of the two events
Consequently an observer in B 'sees the two simultaneous events
2) For an observer B in system S that is fixed on the Earth, see that the event in A and B occur at the same instant, but the event in A must travel a smaller distance and the event in B must travel a greater distance since the system S 'moves with velocity + v. Therefore, since the velocity is constant, the event that travels the shortest distance is seen first.
Consequently observer B sees that the events are not simultaneous
3) let's calculate the times for each event
Δt = Δt₀ /√ (1 + v²/c²)
where t₀ is the time in the system S' which is at rest for the events
True, for example, sound waves are known for vibrating and they move up and down in a particular pattern depending on the pitch and volume. :) Hope this helps x
Answer:
Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.
Explanation:
The corrosion rate is the rate of material remove.The formula for calculating CPR or corrosion penetration rate is

K= constant depends on the system of units used.
W= weight =485 g
D= density =7.9 g/cm³
A = exposed specimen area =100 in² =6.452 cm²
K=534 to give CPR in mpy
K=87.6 to give CPR in mm/yr
mpy


=37.4mpy
mm/yr


=0.952 mm/yr
Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.