Answer:
Part a)
![I_{end} = \frac{mL^2}{3}](https://tex.z-dn.net/?f=I_%7Bend%7D%20%3D%20%5Cfrac%7BmL%5E2%7D%7B3%7D)
Part b)
![I_{edge} = \frac{2ma^2}{3}](https://tex.z-dn.net/?f=I_%7Bedge%7D%20%3D%20%5Cfrac%7B2ma%5E2%7D%7B3%7D)
Explanation:
As we know that by parallel axis theorem we will have
![I_p = I_{cm} + Md^2](https://tex.z-dn.net/?f=I_p%20%3D%20I_%7Bcm%7D%20%2B%20Md%5E2)
Part a)
here we know that for a stick the moment of inertia for an axis passing through its COM is given as
![I = \frac{mL^2}{12}](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7BmL%5E2%7D%7B12%7D)
now if we need to find the inertia from its end then we will have
![I_{end} = I_{cm} + Md^2](https://tex.z-dn.net/?f=I_%7Bend%7D%20%3D%20I_%7Bcm%7D%20%2B%20Md%5E2)
![I_{end} = \frac{mL^2}{12} + m(\frac{L}{2})^2](https://tex.z-dn.net/?f=I_%7Bend%7D%20%3D%20%5Cfrac%7BmL%5E2%7D%7B12%7D%20%2B%20m%28%5Cfrac%7BL%7D%7B2%7D%29%5E2)
![I_{end} = \frac{mL^2}{3}](https://tex.z-dn.net/?f=I_%7Bend%7D%20%3D%20%5Cfrac%7BmL%5E2%7D%7B3%7D)
Part b)
here we know that for a cube the moment of inertia for an axis passing through its COM is given as
![I = \frac{ma^2}{6}](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7Bma%5E2%7D%7B6%7D)
now if we need to find the inertia about an axis passing through its edge
![I_{edge} = I_{cm} + Md^2](https://tex.z-dn.net/?f=I_%7Bedge%7D%20%3D%20I_%7Bcm%7D%20%2B%20Md%5E2)
![I_{edge} = \frac{ma^2}{6} + m(\frac{a}{\sqrt2})^2](https://tex.z-dn.net/?f=I_%7Bedge%7D%20%3D%20%5Cfrac%7Bma%5E2%7D%7B6%7D%20%2B%20m%28%5Cfrac%7Ba%7D%7B%5Csqrt2%7D%29%5E2)
![I_{edge} = \frac{2ma^2}{3}](https://tex.z-dn.net/?f=I_%7Bedge%7D%20%3D%20%5Cfrac%7B2ma%5E2%7D%7B3%7D)
Answer:
<h3>The answer is 0.47 kg</h3>
Explanation:
The mass of the object given it's momentum and velocity can be found by using the formula
![m = \frac{p}{v} \\](https://tex.z-dn.net/?f=m%20%3D%20%20%5Cfrac%7Bp%7D%7Bv%7D%20%20%5C%5C%20)
where
p is the momentum
v is the velocity
We have
![m = \frac{7.1}{15} \\ = 0.4733333...](https://tex.z-dn.net/?f=m%20%3D%20%20%5Cfrac%7B7.1%7D%7B15%7D%20%20%5C%5C%20%20%3D%200.4733333...)
We have the final answer as
<h3>0.47 kg</h3>
Hope this helps you
Answer:
<h2>
44 m/s</h2>
Explanation:
In this problem we are expected to calculate the velocity of Georges movements.
Given data
Total distance covered by George= 850+250= 1100 meters
Time taken by George to cover the total distance= 25 seconds
We know that velocity is, v= distance/ time
Therefore substituting our data into the expression for velocity we have
v= 1100/ 25= 44 m/s
Hence the velocity in m/s is 44