Answer:
Most of materia isnt life.
Explanation:
The living organisms (life) aren't the most abundant thing in universe.
Hydrogen and helium are present in everywhere, but life isn't.
There is no reason to think because we have a lot of a thing, the life must be made for this thing.
The organic life just can exists because some mysterious properties about carbon, that is the basic foundation of life, carbon is a special element, why? We don't know, actually, it's a huge problem for science discover why the carbon can makes life be possible and other elements can't. But we know is this element that makes life possible.
So, note there isn't relation about the quantity of a material in Universe and the life constituition. In addition, look around, organic materials are very rare in Universe, Earth is one in lots of places and in most of this places there isn't sign of life.
Even in Earth the life looks abundant, in Universe it isn't, the same way in Universe the Hydrogen and Helium are abudant, in Earth isn't soo.
Frequency = 1 / (period)
Frequency = 1 / (10 seconds) = (1/10) ( / second) = 0.1 per second = <em>0.1 Hz</em>.
Answer:
The work done on the suitcase is, W = 1691 J
Explanation:
Given data,
The force on the suitcase is, F = 89 N
The distance Russell dragged the suitcase, S = 19 m
The work done on the suitcase by Russell is equal to the work done on the suitcase to overcome the friction
The work done on the suitcase by Russell is given by the formula
W = F · S
Substituting the given values,
W = 89 N x 19 m
W = 1691 J
Hence, the work done on the suitcase is, W = 1691 J
Answer: Velocity terminal = 0.093m/s
Explanation:
1. We start by evaluating the gap distance between the two cylinders as h = R(sleeve) - R(cylinder)
= (0.0604/2 - 0.06/2)m
= 2×10^-4
Surface are of the cylinder in the drop, which is required in order to evaluate the shearing stress can be expressed as A(cylinder) = π.d.L
= (π×0.06×0.4)m²
= 0.075m²
Since the force of the cylinder's weight is going to balance the shearing force on the walls, we can express the next equation and derive terminal velocity from it.
Shearing stress = u×V.terminal/h = 0.86×V/0.0002
= 4300Vterminal
Therefore, Fw = shearing stress × A
30N = 4300Vterminal × 0.075
V. terminal = 30/4300 m.s
V. terminal = 0.093m/s