Making a wire thicker has the same effect as making a road wider. It makes it easier for the electron traffic to flow. The resistance decreases, and the current (traffic) increases.
You are given a fixed rate of 15.9 cm³/s. You are also given with the amount of volume in 237 cm³. Through the approach of dimensional analysis, you can manipulate through operations such that the end result of the units must be in seconds. The solution is as follows:
237 cm³ * (1 s/15.9 cm³) = 14.9 seconds
The solid, liquid and gas phases of water would have the same structure of the molecules since they are same substance. The only difference would be the distances of the molecules in the container. For a ice, the molecules are close to each other where the molecules vibrate only in place. For liquid, the molecules are freely moving and are at some distance with each other but not that far away with each other. Steam, on the other hand, would have molecules that are very far from each other and are freely moving in the whole container. As the container is heated, the size of the molecules would not change. It is only the volume that has changed. Also, the mass is the same since there is no outflow of the substances.
Answer:
Power output = 96.506 watts
Explanation:
Drag coefficient (Cd) = 0.9
V = 7.3 m/s
Air density (ρ) = 1.225 kg/m^(3)
Area (A) = 0.45 m^2
Let's find the drag force ;
Fd=(1/2)(Cd)(ρ)(A)(v^(2))
So Fd = (1/2)(0.9)(1.225)(0.45)(7.3^(2)) = 13.22N
Drag power = Drag Force x Drag velocity.
Thus drag power, = 13.22 x 7.3 = 96.506 watts