Answer:
dA/dt = k1(M-A) - k2(A)
Step-by-step explanation:
If M denote the total amount of the subject and A is the amount memorized, the amount that is left to be memorized is (M-A)
Then, we can write the sentence "the rate at which a subject is memorized is assumed to be proportional to the amount that is left to be memorized" as:
Rate Memorized = k1(M-A)
Where k1 is the constant of proportionality for the rate at which material is memorized.
At the same way, we can write the sentence: "the rate at which material is forgotten is proportional to the amount memorized" as:
Rate forgotten = k2(A)
Where k2 is the constant of proportionality for the rate at which material is forgotten.
Finally, the differential equation for the amount A(t) is equal to:
dA/dt = Rate Memorized - Rate Forgotten
dA/dt = k1(M-A) - k2(A)
first speed --- x mph
return speed -- x+16 mph
6/x + 6/(x+16) = 1
times each term by x(x+16)
6(x+16) + 6x = x(x+16)
x^2 + 4x - 96 = 0
(x-8)(x+12) = 0
x = 8 or x is a negative
her first speed was 8 mph
her return speed was 24 mph
check:
6/8 + 6/24 = 1 , that's good!
For this problem, you're finding volume. The expression for volume is l•w•h (length times width times height).
1.64 as a fraction = 1 16/25