Answer: hole at x = 0, asymptotes at x = -2 and x = -3
<u>Step-by-step explanation:</u>
= 
= 
x ≠ 0 ---> the x cancels out so this is a hole
x + 2 ≠ 0 ---> x ≠ -2 ---> asymptote at x = -2
x + 3 ≠ 0 ---> x ≠ -3 ---> asymptote at x = -3
<span>“If I go to the beach, then I will wear sunblock”.
The hypothesis is the part of the statement that goes after "if".
So the </span>hypothesis is "<span>I go to the beach."</span>
Set the smaller one to x. 2x+6=22, so 2x=16. Thus, x=8 and x+6=14, so 8 and 14 are our numbers.
(f - 7)/g = h
f - 7 = gh
f = gh + 7
48 girls are there. Given that there is a ratio of boys to girls of 7:8. Then divide 42 boys by 7 boys which equals 6. After, multiply 6 by 8 girls equals 48 girls.