1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
3 years ago
13

Por favor ayuda con estw problema de la transformada de ls derivada Y''-6y+9y=t y(0)=0 y' (0)=1

Mathematics
1 answer:
Hunter-Best [27]3 years ago
8 0

Parece que refieres a la transformada de Laplace. Aplica la transformada a los lados ambos de la ecuación diferencial:

\mathcal L_s\{y''(t)-6y'(t)+9y(t)\}=\mathcal L_s\{t\}

Denota por Y(s)=\mathcal L_s\{y(t)\} la transformada de y(t). En el lado izquierdo obtenemos

\mathcal L_s\{y''(t)-6y'(t)+9y(t)\}=\mathcal L_s\{y''(t)\}-6\mathcal L_s\{y'(t)+9\mathcal L_s\{y(t)\}

\mathcal L_s\{y''(t)-6y'(t)+9y(t)\}=(s^2Y(s)-sy(0)-y'(0))-6(sY(s)-y(0))+9Y(s)

\mathcal L_s\{y''(t)-6y'(t)+9y(t)\}=(s^2-6s+9)Y(s)-1

\mathcal L_s\{y''(t)-6y'(t)+9y(t)\}=(s-3)^2Y(s)-1

y a la derecha,

\mathcal L_s\{t\}=\dfrac1{s^2}

Ahora resuelve para Y(s):

(s-3)^2Y(s)-1=\dfrac1{s^2}

(s-3)^2Y(s)=1+\dfrac1{s^2}

Y(s)=\dfrac{s^2+1}{s^2(s-3)^2}

Expande la fracción por la derecha en fracciones parciales; busque a,b,c,d tal que

\dfrac{s^2+1}{s^2(s-3)^2}=\dfrac as+\dfrac b{s^2}+\dfrac c{s-3}+\dfrac d{(s-3)^2}

s^2+1=as(s-3)^2+b(s-3)^2+cs^2(s-3)+ds^2

s^2+1=(a+c)s^3+(-6a+b-3c+d)s^2+(9a-6b)s+9b

Emparejando los términos con igual grado da el sistema con soluciones

\begin{cases}a+c=0\\-6a+b-3c+d=1\\9a-6b=0\\9b=1\end{cases}\implies a=\dfrac2{27},b=\dfrac19,c=-\dfrac2{27},d=\dfrac{10}9

Pues

Y(s)=\dfrac2{27}\dfrac1s+\dfrac19\dfrac1{s^2}-\dfrac2{27}\dfrac1{s-3}+\dfrac{10}9\dfrac1{(s-3)^2}

y tomar la transformada inversa es trivial. Obtenemos

\mathcal L^{-1}_t\{Y(s)\}=\dfrac2{27}\mathcal L^{-1}_t\left\{\dfrac1s\right\}+\dfrac19\mathcal L^{-1}_t\left\{\dfrac1{s^2}\right\}-\dfrac2{27}\mathcal L^{-1}_t\left\{\dfrac1{s-3}\right\}+\dfrac{10}9\mathcal L^{-1}_t\left\{\dfrac1{(s-3)^2}\right\}

\boxed{y(t)=\dfrac2{27}+\dfrac t9-\dfrac2{27}e^{3t}+\dfrac{10}9te^{3t}}

You might be interested in
How do i solve this |6x-3|=7
Y_Kistochka [10]

Answer:

x=5\3,-2\3

Step-by-step explanation:

7 0
2 years ago
What is an equation of the line that passes through the point (2,−6) and is parallel to the line x−2y=8?
lorasvet [3.4K]

Answer:

y = x/2 - 7

Step-by-step explanation:

First, we need to find the slope of the given equation: x - 2y = 8

Subtract x from both sides

x - 2y = 8

- x        - x

-2y = 8 - x

Divide both sides by -2

-2y/-2 = (8 - x)/-2

y = -4 + x/2

The slope of this equation is 1/2

So the equation of our parallel equation is y = x/2 + b

We have to find b, so plug in the given coordinates

-6 = 2/2 + b

-6 = 1 + b

Subtract 1 from both sides

-6 = 1 + b

- 1    - 1

b = -7

Plug it back into the original equation

y = x/2 - 7

6 0
2 years ago
Evaluate the expression<br> Show your work <br> b) -10 -5h for h = -6
vazorg [7]

Answer:

20

Step-by-step explanation:

-10-5x(-6)

-10+30

20

4 0
3 years ago
Probability of father and mother born in Michigan independent.<br><br>​
raketka [301]

Answer:

  A.  no, not independent

Step-by-step explanation:

Let A = "father born in Michigan" and B = "mother born in Michigan".

If A and B are independent, then ...

  P(A|B) = P(A)

The table tells us ...

  P(A|B) = P(A&B)/P(B) = 0.29/0.73 ≈ 0.397

and

  P(A) = 0.48

Since 0.48 ≠ 0.397, we must conclude that the events are not independent.

6 0
3 years ago
Plz ANWSER and make sure it’s in decimal form, plz show ur work <br> Overdue will mark brainest!
kari74 [83]

Answer:

Step-by-step explanation:The model will be of length 0.4 ft and the width being 0.28 feet

Step-by-step explanation:

Step 1.We know that the length of the building is 200 feet, and that the width of the building is 140 feet.

Step 2. the question tells us that "a 1/500 model is built of the building", meaning the problem wants to create a model using the ratio 1 feet for each 500 feet.

Step 3.So now  to find the length and width of the model, we need to divide the given sides by 500.

Step 4. Side length of the Model = 200/500 = 2/5 = 0.4 feet

Step 5. Side width of the Model = 140/500 = 14/50 = 0.28 feet

There for giving us our final answer... "The model will be of length 0.4 feet and width 0.28 feet."

Hope I could help! :)

6 0
3 years ago
Read 2 more answers
Other questions:
  • How do I round 35.26 to the nearest whole <br> number
    15·1 answer
  • What are the solutionso of 8x^2 = 6 + 22x
    12·2 answers
  • Can someone help me with this one question
    6·2 answers
  • PLEASE HELP!!!!!!
    12·2 answers
  • What is 5x23x2 using any property
    8·1 answer
  • Benita spent 25% of her money on new shoes. The
    8·1 answer
  • Help me with this pls AND PLS DONT DELETE THIS BECAUSE SOMEONE KEEPS DELETE MY QUESTIONS FOR NO REASONS PLZz help thanks :)
    5·2 answers
  • How do I determine that answer step by step?
    6·1 answer
  • What number would represent the outlier in the following set of data?
    9·1 answer
  • Complete the table for y= -x-2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!