Answer: (x^2)/16 + (y^2)/25 = 1
Step-by-step explanation:
According to the problem we can figure out that the center of the ellipse is (0,0).
Since the foci is (0,3) and (0,-3) we know that the value of c is 3. The major vertices are (0,5) and (0,-5) so the value of a is 5.
If we put this into the equation a^2=b^2 + c^2, we get 25=9+ b^2
We get b^2 is 16
Now since we know that the ellipse is vertical because the x value didn’t change, we know that the b^2 value comes first in the equation. Then the a^2 value which is 25.
The three vectors
,
, and
each terminate on the plane. We can get two vectors that lie on the plane itself (or rather, point in the same direction as vectors that do lie on the plane) by taking the vector difference of any two of these. For instance,


Then the cross product of these two results is normal to the plane:

Let
be a point on the plane. Then the vector connecting
to a known point on the plane, say (0, 0, 1), is orthogonal to the normal vector above, so that

which reduces to the equation of the plane,

Let
. Then the volume of the region above
and below the plane is

Answer:
When two lines are cut by a transversal, the pairs of angles on either side of the transversal and inside the two lines are called the alternate interior angles . If two parallel lines are cut by a transversal, then the alternate interior angles formed are congruent
Answer:
D ≈ 0.925926 g/cm³
Step-by-step explanation:
Density = Mass / Volume
Step 1: Define
M = 25 g
V = (3 cm)³ = 27 cm³
D = ?
Step 2: Substitute and Evaluate for Density
D = 25g / 27 cm³
D = 25/27 g/cm³
D ≈ 0.925926 g/cm³