Answer:
(−4, −8), because the point satisfies both equations
Step-by-step explanation:
Line A
y = x - 4
Line B
y = 3x + 4
If we equate those 2 equations
x - 4 = 3x + 4
2x = -8
x = -4
y = -8
Answer:
40-80-42-1,000,000= -1,000,082
Step-by-step explanation:
bc calculator
Step-by-step explanation:
Graph 1 is a parabola and has 2 x points and a turning point
meaning it has a minimum and a maximum point.
conclave points are the highs and lows, once you show this in table then you can interpreted them on a graph see the examples attached.
Graph 1 is opposite to shown interpreted conclave so instead of --c++
we write + + c - - and draw on quadrant 1 instead of quadrant 3
graph 2 is decreasing so instead of -+ c then + + it would show + - c then - - so the curve stays in quadrant 3 and 4. Also where c is we draw a 0 and say whether it is minimum or maximum point.
Both graph 1 and 2 demonstrate minimum points for their f(x) for c.
so in your workings within the table you write min as seen in red within the attachment. They wrote max, but you write min as you are in decreasing conclave fx values that reach min point c then they increase and become parabolas.
Answer:
$1.40
Step-by-step explanation:
Divide 4.20 by 3.
Answer:
We need the following three rigid motions:
i) Reflection around y-axis, ii) Translation three units in the -y direction, iii) Translation four units in the -x direction.
Step-by-step explanation:
We need to perform three operations on pentagon ABCDE to create pentagon A'B'C'D'E':
i) Reflection around y-axis:
(Eq. 1)
ii) Translation three units in the -y direction:
(Eq. 2)
iii) Translation four units in the -x direction:
(Eq. 3)
We proceed to proof the effectiveness of operations defined above by testing point D:
1)
Given.
2)
By (Eq. 1)
3)
By (Eq. 2)
4)
By (Eq. 3)/Result