1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
15

(30 points) Which below is an adaption that favors the survival of an organism?

Physics
2 answers:
leva [86]3 years ago
7 0

Answer:

A would definately be the correct answer

Explanation:

Soloha48 [4]3 years ago
5 0

Answer: A. Proteins expressing color in butterfly wings mutate to create camouflaging abilities of butterflies.

Explanation:

Adaptation can be define as the changes occurring in living organisms in their physiology, morphology, and genomic. These adaptations allow organisms to survive in adverse environment.

A. is the correct option. It is an example of physiological adaptation. The color of butterfly wings will change due to protein expression. Thus help in camouflaging the predators by color change.

You might be interested in
Help me, 100 points to answer right, answer without context will be reported
dlinn [17]
734 is the answer for the chronic blood exchange service of new france
7 0
2 years ago
An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal equilibrium at 10
Alexeev081 [22]

Answer:

a) c=1822.3214\ J.kg^{-1}.K^{-1}

b) This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).

c) The material is peat, possibly.

d) The material cannot be ice because ice doesn't exists at a temperature of 100°C.

Explanation:

Given:

  • mass of aluminium, m_a=0.1\ kg
  • mass of water, m_w=0.25\ kg
  • initial temperature of the system, T_i=10^{\circ}C
  • mass of copper block, m_c=0.1\ kg
  • temperature of copper block, T_c=50^{\circ}C
  • mass of the other block, m=0.07\ kg
  • temperature of the other block, T=100^{\circ}C
  • final equilibrium temperature, T_f=20^{\circ}C

We have,

specific heat of aluminium, c_a=910\ J.kg^{-1}.K^{-1}

specific heat of copper, c_c=390\ J.kg^{-1}.K^{-1}

specific heat of water, c_w=4186\ J.kg^{-1}.K^{-1}

Using the heat energy conservation equation.

The heat absorbed by the system of the calorie-meter to reach the final temperature.

Q_{in}=m_a.c_a.(T_f-T_i)+m_w.c_w.(T_f-T_i)

Q_{in}=0.1\times 910\times (20-10)+0.25\times 4186\times (20-10)

Q_{in}=11375\ J

The heat released by the blocks when dipped into water:

Q_{out}=m_c.c_c.(T_c-T_f)+m.c.(T-T_f)

where

c= specific heat of the unknown material

For the conservation of energy : Q_{in}=Q_{out}

so,

11375=0.1\times 390\times (50-20)+0.07\times c\times (100-20)

c=1822.3214\ J.kg^{-1}.K^{-1}

b)

This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).

c)

The material is peat, possibly.

d)

The material cannot be ice because ice doesn't exists at a temperature of 100°C.

7 0
3 years ago
PLEASE ANSWER THIS ASAP I WILL MARK YOU THE BRAINLIEST The actual subject is Science but they dont have that as a option in pick
Sophie [7]

Explanation:

speed : • how fast an object changes position

• miles per hour.

• distance/time.

velocity: • speed in a direction

• miles per hour North

• distance/ time in a direction

5 0
3 years ago
A car (mass = 1090 kg) is traveling at 30.4 m/s when it collides head-on with a sport utility vehicle (mass = 2880 kg) traveling
Thepotemich [5.8K]

Answer:

The sport utility vehicle was traveling at V2= 11.5 m/s.

Explanation:

m1= 1090 kg

V1= 30.4 m/s

m2= 2880 kg

V2= ?

m1*V1 = m2*V2

V2= (m1*V1)/m2

V2= 11.5 m/s

7 0
3 years ago
Peg P is driven by the forked link OA along the path described by r = eu, where r is in meters. When u = p4 rad, the link has an
8_murik_8 [283]

Answer:

The transverse component of acceleration is 26.32 m/s^2 where as radial the component of acceleration is 8.77 m/s^2

Explanation:

As per the given data

u=π/4 rad

ω=u'=2 rad/s

α=u''=4 rad/s

r=e^u

So the transverse component of acceleration are given as

a_{\theta}=(ru''+2r'u')\\

Here

r=e^u\\r=e^{\pi/4}\\r=2.1932 m

r'=e^u.u'\\r'=2.1932 \times 2\\r'=4.3864 m

So

a_{\theta}=(ru''+2r'u')\\a_{\theta}=(2.1932\times 4+2\times 4.3864 \times 2)\\a_{\theta}=26.32 m/s\\

The transverse component of acceleration is 26.32 m/s^2

The radial component is given as

a_r=r''-r\theta'^2

Here

r''=e^u.u'^2+e^u u''\\r''=2.1932 \times (2)^2+2.1932\times 4\\r''=17.5456 m

So

a_r=r''-ru'^2\\a_r=17.5456-2.1932\times (2)^2\\a_r=8.7728 m/s^2

The radial component of acceleration is 8.77 m/s^2

6 0
3 years ago
Other questions:
  • 8. If a circuit has a current of 25.4 amps with 12.6
    8·1 answer
  • A physics student throws a ball straight up. The student catches the ball in exactly the same place from which it was released.
    15·1 answer
  • Elements in a period have _____________.
    12·1 answer
  • A 350-g air track cart is traveling at 1.25 m/s and a 280-g cart traveling in the opposite direction at 1.33 m/s. What is the sp
    10·1 answer
  • A tank whose bottom is a mirror is filled with water to a depth of 19.6 cm. A small fish floats motionless a distance of 6.40 cm
    5·1 answer
  • Power is calculated by multiplying voltage by
    5·1 answer
  • Which is NOT true about oxygen-17 and oxygen-18?
    10·1 answer
  • A block of mass M on a horizontal surface is connected to the end of a massless spring of spring constant k. The block is pulled
    12·1 answer
  • PLEASE HELP! I NEED ANSWER SOON
    12·2 answers
  • Ginny is snowboarding down a ski slope. Her total mass (including the snowboard) is 68.5 kg. When she reaches the bottom of the
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!