Answer:
The work done by this engine is 800 cal
Explanation:
Given:
100 g of water
120°C final temperature
22°C initial temperature
30°C is the temperature of condensed steam
Cw = specific heat of water = 1 cal/g °C
Cg = specific heat of steam = 0.48 cal/g °C
Lw = latent heat of vaporization = 540 cal/g
Question: How much work can be done using this engine, W = ?
First, you need to calculate the heat that it is necessary to change water to steam:
Here, mw is the mass of water
Now, you need to calculate the heat released by the steam:
The work done by this engine is the difference between both heats:
It really depends on the angle where you look at it from and what type of glass/shape they are in. Mine always appeared pretty close even when it wasn't.
Source: Had 5 fish of my own.
Have a lovely day! ~Pooch ♥
Answer:
4541.8 J
Explanation:
First we find the mass of benzene available
mass = density x volume
= 0.867 x 34.1
= 29.5647 g
Then we find the amount of heat transferred by two processes:
heat tranferred = heat lost during temp drop + heat lost during freezing
= mcΔT + mL
= 29.5647 x 1.74 x (20.8 - 5.5) + 29.5647 x 127
= 4541.7883434 J
= 4541.8 J
Answer:
magnitude of the induced emf in the coil is 0.0153 V
Explanation:
Given data
no of turns = 20
area = 0.0015 m²
magnitude B1 = 4.91 T/s
magnitude B2 = 5.42 T/s
to find out
the magnitude of the induced emf in the coil
solution
we know here
emf = -n A d∅ /dt
so here n = 20 and
A = 0.0015
and d∅ = B2 - B1 = 5.42 - 4.91
d∅ = 0.51 T and dt at 1 sec
so put all value
emf = -n A d∅ /dt
emf = -20 (0.0015) 0.51 / 1
emf = - 0.0153
so magnitude of the induced emf in the coil is 0.0153 V
Answer:
B) protons and neutrons.
Explanation:
The protons and neutrons are located in the nucleus of the atom and represent most of the 'mass' of the atom, that's their count that determine the 'mass' of an atom (like 12 for Carbon).
The electrons rotate around the nucleus and have a negligible mass.