Answer: Magnetic and gravitational force
Explanation: When a magnet and an iron nail are kept at a distance,the magnet attracts the nail without touching using magnetic force. In this example, the magnet and the nail are interacting.
The earth pulls the moon towards it and keeps it in orbit without touching it, using gravitational force. In this example,the moon and the earth are interacting.
PLEASE RATE 5 STARS AND VOTE AS BRAINLIEST:)
(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)
Explanation:
W = PE
W = mgh
1500 J = (20 kg) (9.8 m/s²) h
h = 7.65 m
Round as needed.
Answer:
The two objects are traveling at the same speed.
Explanation:
Neglecting air resistance, an object that is thrown up from the top of a tall building has the same speed as the second object thrown down from the top of the same tall building since the initial speed is the same.
The object thrown up is not traveling faster neither is the object thrown down traveling faster.
Therefore, the two objects will have the same speed when they hit the ground but their time of landing might be different.
Answer:
F = 7,916,955.0N
Explanation:
According to newtons second law
Force = mass * acceleration
Given
mass = 52.0kg
distance S = 22.0m
time t = 17.0 ms = 0.017s
We need to get the acceleration first using the formula;
S = ut+ 1/2at²
22 = 0 + 1/2 a(0.017²)
22 = 0.0001445a
a = 22/0.0001445
a = 152,249.13m/s²
The magnitude of the average force exerted will be;
F = ma
F = 52 * 152,249.13
F = 7,916,955.0N
Answer:
Yes
Explanation:
There are two types of interference possible when two waves meet at the same point:
- Constructive interference: this occurs when the two waves meet in phase, i.e. the crest (or the compression, in case of a longitudinale wave) meets with the crest (compression) of the other wave. In such a case, the amplitude of the resultant wave is twice that of the original wave.
- Destructive interferece: this occurs when the two waves meet in anti-phase, i.e. the crest (or the compression, in case of a longitudinal wave) meets with the trough (rarefaction) of the other wave. In this case, the amplitude of the resultant wave is zero, since the amplitudes of the two waves cancel out.
In this problem, we have a situation where the compression of one wave meets with the compression of the second wave, so we have constructive interference.