Prove that root3 (cosec (20))-sec (20)=4
2 answers:
Root 3 /sin 20 - 1/cos 20
= (root3 cos 20 - sin 20 )/ (sin 20 cos 20)
(multiplying and dividing by 2)
= 2* (root3/2 cos 20 -1/2 sin 20)/ (sin 20 cos 20)
now sin 20 cos 20 = (2 sin 20 cos 20)/2 = (sin 40)/2
and writing root3/2 = sin 60, 1/2 = cos 60
= 2* (sin 60 cos 20 - cos 60 sin 20)/ (sin 40)/2
= 4* (sin (60-20))/sin 40
= 4* (sin 40)/sin 40
=4
Ask if any doubt in any step :)
Hello,
1) Rappels:
all angles are in degree.
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
2sin(a)cos(a)=sin(2a)
sin(a)=cos(90-a)
cos(30)=√3/2
sin(30)=1/2
2)
√3 cos(20)-sin(20)=2(√3/2 cos(20)-1/2 sin(20)
=2*(cos(30) *sin(20)-sin(30) sin(20))=2 cos(30+20)=2 cos(50)
sin(20) cos(20)=1/2 cos(40)=1/2 cos(50)
<span>√3 (cosec (20))-sec (20) = √3 /sin(20)-1/cos(20)
=[√3*cos(20)-sin(20)]/(sin(20)cos(20))
=2 cos(50)/ (1/2cos(50))=4
</span>
You might be interested in
Answer:
We have 7n < 6 - 48;
7n < - 42;
n < -6;
Then, 3n - 4 ≤ 8;
3n ≤ 12;
n ≤ 4;
Step-by-step explanation:
Answer:
find the same x-value and the same y-value that satisfies both ... 1 2 3. + 4 5 6. 5 7 9 ... + (4x – 2y + 9 = 0).
Step-by-step explanation:
Hope you could understand.
If you have any query, feel free to ask.
Answer:
D
Step-by-step explanation:
The ratio of corresponding sides are equal, that is
= 