Answer:
x + x+12 + 3(x+12) = 123
x = 15
Step-by-step explanation:
Jamil : x
Kiera : x+12
Luther : 3 ( x+12)
x + x+12 + 3(x+12) = 123
Distribute
x + x+12 + 3x+36 = 123
Combine like terms
5x+ 48 = 123
Subtract 48 from each side
5x+48-48 = 123-48
5x =75
Divide by 5
5x/5 = 75/5
x = 15
Answer:
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhbbbbbbbbbbbbbbbbbbbbbbbbb
Step-by-step explanation:
Answer:
Option (4)
Step-by-step explanation:
Given system of equations is,
y = -x²- 4x - 3
y = 2x + 5
To get the solution of the system of equations algebraically,
2x + 5 = -x²- 4x - 3
Now combine like terms onto one side of the equation.
-x² - (4x + 2x) - (3 + 5) = 0
x² + 6x + 8 = 0
Then factorize the equation,
x² + 4x + 2x + 8 = 0
x(x + 4) + 2(x + 4) =0
(x + 2) (x + 4) = 0
x = -2, 4
Option (4) is the answer.
Answer:
266.666667
Step-by-step explanation:
Answer:
[2 5 0]
[-7 -11/2 12]
Step-by-step explanation:
We want to perform elementary row operation represented by R2 - ½R1 on matrix A in the figure attached.
Now, matrix A is given as;
[2 5 0]
[-6 -3 12]
Now, R1 is row 1 = [2 5 0]
R2 is row 2 = [-6 -3 12]
Thus, R2 - ½R1 = [-6 -3 12] - ½[2 5 0]
This gives;
[-6 -3 12] - [1 5/2 0] = [-7 -11/2 12]
Now,[-7 -11/2 12] will be the new row 2 since it's just an elementary row operation we did on the Matrix A.
Thus, the new matrix is now;
[2 5 0]
[-7 -11/2 12]