A infared light has a higher
Answer:
Explanation:
Let s be displacement from equilibrium position . Restoring force
m d²s / dt² = - k s
d²s / dt² = - k /m s
Put k /m = ω
d²s / dt² + ω² s = 0
The solution of this differential equation
= s = A cosωt
Now when t = 0 , s = 2 cm
A = 2 cm
Putting the values we have
2 = A cos 0
A = 2 cm
s ( t) = 2 cos ωt
Answer:
(1/4)F
Explanation:
Let F be the force on charges q and q' separated by a distance, d
F = kqq'/d²
Now, if q and q' are doubled, our new charges are 2q and 2q' respectively and, if the distnace is increased by four times, then our new distance is 4d. So our new force F' = k (2q)(2q')/(4d)²
= 4kqq'/16d²
= kqq'/4d²
= F/4
So, the magnitude of our new force is F/4
Answer:
V₂ = - m₁ V₁ / m₂
Explanation:
According to law of conservation of momentum, "Total momentum of an isolated system remains constant. i.e
Pi = Pf
We consider ball and catapult an isolated system.
before launching ball momentum of the system is zero.
After launching ball momentum of ball is:
Pb= 0.1 * 500 = 50 kg m/s
Now according to law of conservation of momentum:
Pf = Pi
⇒ Pb + Pc = 0
Let Pb= m₁ V₁
& Pc = m₂ V₂
So
m₁ V₁ + m₂ V₂ = 0
⇒ V₂ = - m₁ V₁ / m₂
The negative sing shows that catapult velocity will have opposite direction to the ball velocity.
Answer:
<h2>500 J</h2>
Explanation:
The gravitational potential energy of a body can be found by using the formula
GPE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have
GPE = 5 × 10 × 10
We have the final answer as
<h3>500 J</h3>
Hope this helps you