Answer:
The flux through the surface of the cube is 
Solution:
As per the question:
Edge of the cube, a = 8.0 cm = 
Volume Charge density, 
Now,
To calculate the electric flux:
(1)
where
= electric flux
= permittivity of free space
Volume Charge density for the given case is given by the formula:
(2)
Volume of cube, 
Thus

Thus from eqn (2), the total charge is given by:


Now, substitute the value of 'q' in eqn (1):

The magnitude (size or numerical value) and the direction.
Hope this helps!!! :)
Answer:
Option a. the number of transistors per square inch on integrated circuits will double every two years.
Explanation:
Moore's law states that the number of transistors in an integrated circuit will double every two years.
<em><u>The</u></em><em><u> </u></em><em><u>atomic</u></em><em><u> </u></em><em><u>nucleus</u></em><em><u> </u></em><em><u>consists</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>protons</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u>.</u></em>
<em><u>Additional</u></em><em><u> </u></em><em><u>information</u></em><em><u>:</u></em>
<em><u>Protons</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>positive</u></em><em><u>ly</u></em><em><u> </u></em><em><u>charged</u></em><em><u> </u></em><em><u>particl</u></em><em><u>e</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>negative</u></em><em><u>ly</u></em><em><u> </u></em><em><u>charged</u></em><em><u> </u></em><em><u>particle</u></em><em><u>.</u></em>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>:</u></em><em><u>)</u></em>
Explanation:
a)
Sum of moments = 0 (Equilibrium)
T . cos (Q)*L = m*g*L/2



b) If the String is shorter the Q increases; hence, Cos Q decreases which in turn increases Tension in the string due to inverse relationship!
c)
