True because friction happens when two things are rubbed against each other and it creates force and sliding something vigorously against something else can create force.
The extrapolated temperature is used to define the maximum temperature of the mixture relatively than the highest recorded temperature in which the conclusion will effect in a higher specific heat value. Heat is bound to escape from whatever apparatus is using, therefore it is needed to account for the loss of the heat that does not go into increasing the temperature of the mixture.
Answer:
The extension of the second wire is 
Explanation:
From the question we are told that
The length of the wire is 
The elongation of the wire is 
The tension is 
The length of the second wire is 
Generally the Young's modulus(Y) of this material is

Where 
Where A is the area which is evaluated as

and 
So

Since the wire are of the same material Young's modulus(Y) is constant
So we have


Now the ration between the first and the second wire is

Since tension , radius are constant
We have

substituting values




Answer:
m=image distance÷object distance
Answer:
a) 17.8 m/s
b) 28.3 m
Explanation:
Given:
angle A = 53.0°
sinA = 0.8
cosA = 0.6
width of the river,d = 40.0 m,
the far bank was 15.0 m lower than the top of the ramp h = 15.0 m,
The river itself was 100 m below the ramp H = 100 m,
(a) find speed v
vertical displacement

putting values h=15 m, v=0.8
............. (1)
horizontal displacement d = vcosA×t = 0.6×v ×t
so v×t = d/0.6 = 40/0.6
plug it into (1) and get

solving for t we get
t = 3.734 s
also, v = (40/0.6)/t = 40/(0.6×3.734) = 17.8 m/s
(b) If his speed was only half the value found in (a), where did he land?
v = 17.8/2 = 8.9 m/s
vertical displacement = 
⇒ 
t = 5.30 s
then
d =v×cosA×t = 8.9×0.6×5.30= 28.3 m