let's first off convert those mixed fractions to improper fractions, then get their difference.
![\bf \stackrel{mixed}{1\frac{1}{2}}\implies \cfrac{1\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{3}{2}}~\hfill \stackrel{mixed}{2\frac{1}{10}}\implies \cfrac{2\cdot 10+1}{10}\implies \stackrel{improper}{\cfrac{21}{10}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{21}{10}-\cfrac{3}{2}\implies \stackrel{\textit{using the LCD of 10}}{\cfrac{(1)21-(5)3}{10}}\implies \cfrac{21-15}{10}\implies \cfrac{6}{10}\implies \cfrac{3}{5}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B3%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B1%7D%7B10%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%2010%2B1%7D%7B10%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B21%7D%7B10%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7B21%7D%7B10%7D-%5Ccfrac%7B3%7D%7B2%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20LCD%20of%2010%7D%7D%7B%5Ccfrac%7B%281%2921-%285%293%7D%7B10%7D%7D%5Cimplies%20%5Ccfrac%7B21-15%7D%7B10%7D%5Cimplies%20%5Ccfrac%7B6%7D%7B10%7D%5Cimplies%20%5Ccfrac%7B3%7D%7B5%7D)
now, the original amount, 3/2, if that is the 100%, what is 3/5 off of it in percentage?

Alright...so the coordinates of an ordered pair have opposite signs [one sign is positive while the other is negative] so we could have an example of (-x,+y) or (+x,-y) ...that means out of the 4 quadrants these points could be in the 2nd quadrant or the 4th quadrant or corners of the graph
Here's a rough graph haha
the graph has a factor of 4/1 (considered the "slope"), and the vertex is translated 2 units to the right (whatever is in the | lines | has the negative/positive flipped), and 6 units down.
17. The answer should be 17